A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility

Yuncang Li1, Gottfried Kirchengast2, Barbara Scherllin‐Pirscher2, Suqin Wu1, Marc Schwaerz2, Johannes Fritzer2, Shaocheng Zhang1, Brett Carter1, Kefei Zhang1
1Satellite Positioning for Atmosphere, Climate, and Environment (SPACE) Research Centre, RMIT University, Melbourne, Victoria, Australia
2Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP), University of Graz, Graz, Austria

Tóm tắt

Abstract

Global Navigation Satellite System (GNSS)‐based radio occultation (RO) is a satellite remote sensing technique providing accurate profiles of the Earth's atmosphere for weather and climate applications. Above about 30 km altitude, however, statistical optimization is a critical process for initializing the RO bending angles in order to optimize the climate monitoring utility of the retrieved atmospheric profiles. Here we introduce an advanced dynamic statistical optimization algorithm, which uses bending angles from multiple days of European Centre for Medium‐range Weather Forecasts (ECMWF) short‐range forecast and analysis fields, together with averaged‐observed bending angles, to obtain background profiles and associated error covariance matrices with geographically varying background uncertainty estimates on a daily updated basis. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.4 (OPSv5.4) algorithm, using several days of simulated MetOp and observed CHAMP and COSMIC data, for January and July conditions. We find the following for the new method's performance compared to OPSv5.4: 1.) it significantly reduces random errors (standard deviations), down to about half their size, and leaves less or about equal residual systematic errors (biases) in the optimized bending angles; 2.) the dynamic (daily) estimate of the background error correlation matrix alone already improves the optimized bending angles; 3.) the subsequently retrieved refractivity profiles and atmospheric (temperature) profiles benefit by improved error characteristics, especially above about 30 km. Based on these encouraging results, we work to employ similar dynamic error covariance estimation also for the observed bending angles and to apply the method to full months and subsequently to entire climate data records.

Từ khóa


Tài liệu tham khảo

10.5194/amt‐4‐1077‐2011

10.1175/BAMS‐89‐3‐313

10.1029/2012GL051720

Bassiri S., 1993, Higher‐order ionospheric effects on the GPS observables and means of modeling them, Manuscr. Geod., 18, 280

10.1002/qj.756

10.1002/jgra.50089

10.1175/2008WAF2007070.1

10.5194/amt‐6‐2169‐2013

10.1002/qj.828

Foelsche U. andB.Scherllin‐Pirscher(2012) Development of bending angle climatology from RO data CDOP Visiting Scient. Report 14 Danish Meteorol. Inst. Copenhagen Denmark.

10.3319/TAO.2008.01.14.01(F3C)

10.5194/amt‐4‐2007‐2011

Fritzer J. G.Kirchengast andM.Pock(2011) End‐to‐End Generic Occultation Performance Simulation and Processing System version 5.5 (EGOPS 5.5) Software User Manual Tech.Rep.ESA/ESTEC‐1/2011 Wegener Center and IGAM/Inst. of Physics Univ. of Graz Graz Austria.

10.5194/amt‐6‐121‐2013

Gobiet A. andG.Kirchengast(2002) Sensitivity of atmospheric profiles retrieved from GNSS occultation data to ionospheric residual and high‐altitude initialization errors Tech.Rep.ESA/ESTEC‐1/2002 Inst. for Geophys. Astrophys. and Meteorol. Univ. of Graz Graz Austria.

10.1029/2004JD005117

10.5194/acp‐7‐3519‐2007

10.1029/2000RS002370

10.1016/S1364‐6826(01)00114‐6

10.1029/2003JD003909

10.5194/angeo‐19‐459‐2001

10.1002/qj.49712656606

10.1256/qj.04.182

10.1029/90JA02125

10.1029/2009JD011969

10.1029/2012JD017665

10.1007/s00585‐997‐0443‐1

Isaksen L., 2010, The new Ensemble of Data Assimilations, ECMWF Newsl., 123, 17

10.1126/science.271.5252.1107

10.1029/97JD01569

10.1029/96RS01094

10.5194/amt‐4‐2065‐2011

10.22499/2.6002.004

Leitinger R., 1996, A ‘simple’ global empirical model for the F layer of the ionosphere (in German; English version available from the authors), Kleinheubacher Ber., 39, 697

10.1016/j.asr.2013.05.021

10.1029/2004RS003117

10.1175/2008BAMS2399.1

10.5194/amt‐4‐2837‐2011

Pirscher B.(2010) Multi‐satellite climatologies of fundamental atmospheric variables from radio occultation and their validation (PhD thesis) Sci. Rep. 33‐2010 Wegener Center Verlag Graz.

10.1029/2000JD000052

10.1029/97JD02400

Rocken C. W.Schreiner S.Sokolovskiy andD.Hunt(2009) Ionospheric errors in COSMIC radio occultation profile paper presented at the 89th Annual Meeting Am.Meteorol.Soc. Phoenix Ariz. 14 Jan.

10.1029/RG014i004p00609

10.1142/9789812813718

10.5194/amt‐4‐1875‐2011

10.5194/amt‐4‐2019‐2011

10.1029/2006GL027557

10.1029/2010JD014850

Simmons A., 2007, ERA‐Interim: New ECMWF reanalysis products from 1989 onwards, ECMWF Newsl., 110, 25

SokolovskiyS. andD.Hunt(1996) Statistical optimization approach for GPS/MET data inversions paper presented at the URSI GPS/MET workshop Union Radio Sci. Int. Tuscon Ariz.

10.1007/978-3-662-09041-1_15

10.1029/2004JD005251

10.1007/s00585‐999‐0122‐5

10.1016/S1464‐1895(01)00034‐5

10.1029/2010RS004614

10.5194/acp‐13‐1469‐2013

10.1029/1999RS002199

Untch A., 2006, Towards a global meso‐scale model: The high‐resolution system T799L91 and T399L62 EPS, ECMWF Newsl., 108, 6

10.1029/2002JD002908

10.1029/2009GL039968

Vorob'ev V. V., 1994, Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Izvestiya, Atmos. Oceanic Phys., 29, 602

10.1175/1520‐0477(1996)077<0019:GSOTAF>2.0.CO;2

10.1029/2001GL013117

10.2151/jmsj.2004.381

10.1029/2010JA015466