Một phương pháp mới để cải thiện hiệu suất tường lửa ứng dụng web dựa trên phương pháp vector hỗ trợ và phân tích yêu cầu Http
Tóm tắt
Từ khóa
#tiêm SQL #XSS #kiểm tra đường dẫn #DDOS #CSRF #phương pháp dựa trên mẫu dấu hiệu #phương pháp phát hiện bất thường #phương pháp học máy #truy vấn HTTPTài liệu tham khảo
Авезова Яна. Веб-приложения: тестируем на защищенность // Positive Research 2019. — 2019. — С. 144—148.
Ross Kevin. SQL Injection Detection Using Machine Learning Techniques and Multiple Data Sources. — 2018.
Uwagbole Solomon Ogbomon, Buchanan William J, Fan Lu. Applied machine learning predictive analytics to SQL injection attack detection and prevention // 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). — IEEE. 2017. —
P. 1087–1090.
Mishra Sonali. SQL Injection Detection Using Machine Learning. —2019.
Бодров В.А., Белоусова Е.С. Анализ и методы защиты веб-приложений от атак типа LDAP-инъекция. — 2019.
Lakhapati Shweta A, Shirbhate PV, Jagtap Shivani, Shrirang Ashwini. Cross site scripting attack // International Journal of Electronics, Communication and Soft Computing Science & Engineering (IJECSCSE). — 2018. —
P. 131–135.
Mereani Fawaz A, Howe Jacob M. Detecting Cross-Site Scripting Attacks Using Machine Learning // International Conference on Advanced Machine Learning Technologies and Applications. — Springer. 2018. — P. 200–210.
Akamai. Q3 2017 State of the Internet / Security Report: DDoS Attack
Update Q3 2017 vs. Q2 2017. — 2017. — URL: https://www.akamai.
com/us/en/about/our-thinking/state-of-the-internet-report/global-stateof-the-internet-security-ddos-attack-reports.jsp.
Doshi Rohan, Apthorpe Noah, Feamster Nick. Machine learning ddos detection for consumer internet of things devices // 2018 IEEE Security
and Privacy Workshops (SPW). — IEEE. 2018. — P. 29–35.
Idhammad Mohamed, Afdel Karim, Belouch Mustapha. Semi-supervised machine learning approach for DDoS detection // Applied Intelligence. — 2018. — Vol. 48, no. 10. — P. 3193–3208.
Fleming Theodor, Wilander Hjalmar. Network intrusion and detection: An evaluation of
snort. 2018.
Shah Syed Ali Raza, Issac Biju. Performance comparison of intrusion detection systems and application of machine learning to Snort system // Future Generation Computer Systems. — 2018. — Vol. 80. — P. 157– 170.
Duessel Patrick, Gehl Christian, Flegel Ulrich, Dietrich Sven, Meier Michael. Detecting zero-day attacks using context-aware anomaly detection at the application-layer // International Journal of Information Security. — 2017. — Vol. 16, no. 5. — P. 475–490.
Zhang Ming, Lu Shuaibing, Xu Boyi. An anomaly detection method based on multi-models to detect web attacks // 2017 10th International Symposium on Computational Intelligence and Design (ISCID). Vol. 2. — IEEE. 2017. — P. 404–409.
Ciocarlie Gabriela F, Stavrou Angelos, Stolfo Salvatore J, Keromytis Angelos D. Systems, methods, and media for generating sanitized data, sanitizing anomaly detection models, and/or generating sanitized anomaly detection models. — 1 8/2019. — US Patent App. 10/178,113.
Caesarano Arif Roid, Riadi Imam. Network Forensics for Detecting SQL Injection Attacks Using NIST Method. — 2018.
Olanrewaju Rashidah Funke, Khan Burhan Ul Islam, Najeeb Athaur Rahman, Zahir KN, Hussain S. Snort-based smart and swift intrusion detection system // Indian Journal of Science and Technology. — 2018. — Vol. 8, no. 1. — P. 1–9.
Браницкий А.А., Котенко И.В. Анализ и классификация методов обнаружения сетевых атак // Труды СПИИРАН. — 2016. — Т. 2, № 45. — С. 207—244.
Rangaraju Naveen Kumar, Sriramoju Shoban Babu, Sarma SSVN. A study on machine learning techniques towards the detection of distributed denial of service attacks // International Journal of Pure and Applied Mathematics. — 2018. — Vol. 120, no. 6. — P. 7407–7423.
Shukla Satya Narayan, Sahu Anit Kumar, Willmott Devin, Kolter J Zico. Black-box Adversarial Attacks with Bayesian Optimization // arXiv preprint arXiv:1909.13857. — 2019.
Swarnkar Mayank, Hubballi Neminath. OCPAD: One class Naive Bayes classifier for payload-based anomaly detection // Expert Systems with Applications. — 2016. — Vol. 64. — P. 330–339.
Zhang Bing, Liu Zhiyang, Jia Yanguo, Ren Jiadong, Zhao Xiaolin. Network Intrusion Detection Method Based on PCA and Bayes Algorithm // Security and Communication Networks. — 2018. — Vol. 2018.
Васильев В.И., Шарабанов И.В. Интеллектуальная система обнаружения атак в локальных беспроводных сетях // Вестник Уфимского государственного авиационного технического университета. 2015. Т. 19, 4 (70).
Gupta Jyotika, Chaturvedi Krishna Nand, Gupta Jyotika, Chaturvedi Krishna Nand. Improved Algorithm for Network Intrusion Detection System based on K-Nearest Neighbor: Survey // International Journal. 2016. Vol. 3. P. 81–84.
Su Ming-Yang. Real-time anomaly detection systems for Denial-ofService attacks by weighted k-nearest-neighbor classifiers // Expert Systems with Applications. — 2011. — Vol. 38, no. 4. — P. 3492–3498.
Lee Chi Hoon, Chung Jin Wook, Shin Sung Woo. Network intrusion detection through genetic feature selection // Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS International Conference on. — IEEE. 2006. — P. 109–114.
Ahmim Ahmed, Maglaras Leandros, Ferrag Mohamed Amine, Derdour Makhlouf, Janicke Helge. A novel hierarchical intrusion detection system based on decision tree and rules-based models // 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). — IEEE. 2019. — P. 228–233.
Zhang Ming, Xu Boyi, Bai Shuai, Lu Shuaibing, Lin Zhechao. A deep learning method to detect web attacks using a specially designed CNN // International Conference on Neural Information Processing. Springer. 2017. — P. 828–836.
Gupta Abhishek, Jain Ankit, Yadav Samartha, Taneja Harsh. Literature survey on detection of web attacks using machine learning // International Journal of Scientific Research Engineering & Information Technology. 2018.
Vol. 3. P. 1845–1853.