A multiscale DEM–FEM coupled approach for the investigation of granules as crash-absorber in ship building
Tóm tắt
Từ khóa
Tài liệu tham khảo
(2019) U. N. C. on Trade, Development, Review of Maritime Transport 2019 https://www.un-ilibrary.org/content/publication/17932789-en
Ehlers S, Tabri K, Romanoff J, Varsta P (2012) Numerical and experimental investigation on the collision resistance of the x-core structure. Ships Offshore Struct 7(1):21–29
Karlsson UB (2009) Improved collision safety of ships by an intrusion-tolerant inner side shell. Marine Technol 46(3):165–173
Schöttelndreyer M (2015) Füllstoffe in der Konstruktion: ein Konzept zur Verstärkung von Schiffsseitenhüllen, Technische Universität Hamburg
Woitzik C, Düster A (2017) Modelling the material parameter distribution of expanded granules. Granul Matter 19(3):52
Chaudry MA, Woitzik C, Düster A, Wriggers P (2018) Experimental and numerical characterization of expanded glass granules. Comput Particle Mech 5(3):297–312
Woitzik C, Düster A (2020) Experimental investigation of granules as crash-absorber in ship building. Ships Offshore Struct 1–12
Chaudry MA (2020) A multiscale DEM–FEM coupled approach for modelling of collision of particle-filled structures. Univ., Inst. für Kontinuumsmechanik, Leibniz-Universität-Hannover, Institut für Kontinuumsmechanik
Dhia HB (1998) Multiscale mechanical problems: the arlequin method, Comptes Rendus de l’Academie des Sciences Series IIB Mechanics Physics. Astronomy 12(326):899–904
Dhia HB, Rateau G (2005) The arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62(11):1442–1462
Wellmann C, Wriggers P (2012) A two-scale model of granular materials. Comput Methods Appl Mech Eng 205:46–58
Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53
Cui L, O’sullivan C, O’neill S, (2007) An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model. Geotechnique 57(10):831–844
Wellmann C, Lillie C, Wriggers P (2008) Homogenization of granular material modeled by a three-dimensional discrete element method. Comput Geotech 35(3):394–405
D’Addetta G, Ramm E, Diebels S, Ehlers WA Particle center based homogenization strategy for granular assemblies, Engineering Computations
O’Sullivan C, Bray JD, Li S (2003) A new approach for calculating strain for particulate media. Int J Numer Anal Methods Geomech 27(10):859–877
Ehlers W, Ramm E, Diebels S, d’Addetta G (2003) From particle ensembles to cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int J Solids Struct 40(24):6681–6702
Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106
Jamin C, Pion S, Teillaud M (2018) 3D triangulations. In: CGAL user and reference manual, 4.13 Edition, CGAL Editorial Board
Luding S (2004) Micro-macro transition for anisotropic, frictional granular packings. Int J Solids Struct 41(21):5821–5836
Lätzel M, Luding S, Herrmann HJ (2000) Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granul Matter 2(3):123–135
Sakai M, Koshizuka S (2009) Large-scale discrete element modeling in pneumatic conveying. Chem Eng Sci 64(3):533–539
Bierwisch C, Kraft T, Riedel H, Moseler M (2009) Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. J Mech Phys Solids 57(1):10–31
Queteschiner D, Lichtenegger T, Schneiderbauer S, Pirker S (2018) Coupling resolved and coarse-grain dem models. Part Sci Technol 36(4):517–522
Feng Y, Han K, Owen D, Loughran J (2009) On upscaling of discrete element models: similarity principles. Eng Comput 26(6):599–609
Roessler T, Katterfeld A (2018) Scaling of the angle of repose test and its influence on the calibration of dem parameters using upscaled particles. Powder Technol 330:58–66
Simo JC, Hughes TJ (2006) Computational inelasticity, Vol. 7, Springer
Simo J, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49(2):221–245
Mediavilla J, Peerlings R, Geers M (2006) A nonlocal triaxiality-dependent ductile damage model for finite strain plasticity. Comput Methods Appl Mech Eng 195(33–36):4617–4634
Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166
Korelc J, Šolinc U, Wriggers P (2010) An improved eas brick element for finite deformation. Comput Mech 46(4):641–659
Weißenfels C (2012) Contact methods integrating plasticity models with application to soil mechanics, Ph.D. Thesis, Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB)
Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274
Kolymbas D (2007) Geotechnik: Bodenmechanik, Grundbau und Tunnelbau, 2nd edn. Springer
Ringsberg JW (2010) Characteristics of material, ship side structure response and ship survivability in ship collisions 5(1):51–66. https://doi.org/10.1080/17445300903088707
Maranha J, Maranha das Neves E The experimental determination of the angle of dilatancy in soils
Zhang S, Pedersen PT, Villavicencio R (2019) Probability and mechanics of ship collision and grounding. Butterworth-Heinemann
Chaudry MA, Wriggers P (2018) On the computational aspects of comminution in discrete element method. Comput Part Mech 5(2):175–189
Ciantia M, Alvarez Arroyo, de Toledo M, Calvetti F, Gens Solé A (2015) An approach to enhance efficiency of dem modelling of soils with crushable grains. Géotechnique 65(2):91–110