A model of cardiac electrical activity incorporating ionic pumps and concentration changes

The Royal Society - Tập 307 Số 1133 - Trang 353-398 - 1985
Dario DiFrancesco1, Denis Noble1
1Google Scholar Find this author on PubMed

Tóm tắt

Equations have been developed to describe cardiac action potentials and pacemaker activity. The model takes account of extensive developments in experimental work since the formulation of the M.N.T. (R. E. McAllister, D. Noble and R. W. Tsien, J. Physiol., Lond. 251, 1-59 (1975)) and B.R. (G. W. Beeler and H. Reuter, J. Physiol., Lond . 268, 177-210 (1977)) equations. The current mechanism i K2 has been replaced by the hyperpolarizing-activated current, i f . Depletion and accumulation of potassium ions in the extracellular space are represented either by partial differential equations for diffusion in cylindrical or spherical preparations or, when such accuracy is not essential, by a three-compartment model in which the extracellular concentration in the intercellular space is uniform. The description of the delayed K current, i K , remains based on the work of D. Noble and R. W. Tsien ( J. Physiol., Lond . 200, 205-231 (1969 a )). The instantaneous inward-rectifier, i K1 , is based on S. Hagiwara and K. Takahashi’s equation ( J. Membrane Biol . 18, 61-80 (1974)) and on the patch clamp studies ofB. Sakmann and G. Trube ( J. Physiol., Lond . 347, 641-658 (1984)) and of Y. Momose, G. Szabo and W. R. Giles ( Biophys. J . 41, 311a (1983)). The equations successfully account for all the properties formerly attributed to i K2 , as well as giving more complete descriptions of i K1 and i K . The sodium current equations are based on experimental data of T. J. Colatsky ( J.Physiol., Lond. 305, 215-234 (1980)) and A. M. Brown, K. S. Lee and T. Powell ( J.Physiol., Lond. , Lond. 318, 479-500 (1981)). The equations correctly reproduce the range and magnitude of the sodium ‘window’ current. The second inward current is based in part on the data of H. Reuter and H. Scholz ( J. Physiol., Lond . 264, 17-47 (1977)) and K. S. Lee and R. W. Tsien ( Nature, Lond . 297,498-501 (1982)) so far as the ion selectivity is concerned. However, the activation and inactivation gating kinetics have been greatly speeded up to reproduce the very much faster currents recorded in recent work. A major consequence of this change is that Ca current inactivation mostly occurs very early in the action potential plateau. The sodium-potassium exchange pump equations are based on data reported by D. C. Gadsby ( Proc. natn. Acad. Sci. U. S. A. 77, 4035-4039 (1980)) and by D. A. Eisner and W. J. Lederer ( J. Physiol., Lond . 303, 441-474 (1980)). The sodium-calcium' exchange current is based on L. J. Mullins’ equations ( J. gen.. Physiol. 70, 681-695 (1977)). Intracellular calcium sequestration is represented by simple equations for uptake into a reticulum store which then reprimes a release store. The repriming equations use the data of W. R. Gibbons & H. A. Fozzard ( J. gen. Physiol . 65, 367-384 (1975 b )). Following Fabiato & Fabiato’s work ( J. Physiol., Lond. 249, 469-495 (I975)), Ca release is assumed to be triggered by intracellular free calcium. The equations reproduce the essential features of intracellular free calcium transients as measured with aequorin. The explanatory range of the model entirely includes and greatly extends that of the M.N.T. equations. Despite the major changes made, the overall time-course of the conductance changes to potassium ions strongly resembles that of the M.N.T. model. There are however important differences in the time courses of Na and Ca conductance changes. The Na conductance now includes a component due to the hyperpolarizing-activated current, i r , which slowly increases during the pacemaker depolarization. The Ca conductance changes are very much faster than in the M.N.T. model so that in action potentials longer than about 50 ms the primary contribution of the fast gated calcium channel to the plateau is due to a steady-state ‘window’ current or non-inactivated component. Slower calcium or Ca-activated currents, such as the Na-Ca exchange current, or Ca-gated currents, or a much slower Ca channel must then play the dynamic role previously attributed to the kinetics of a single type of calcium channel. This feature of the model in turn means that the repolarization process should be related to the inotropic state, as indicated by experimental work. The model successfully reproduces intracellular sodium concentration changes produced by variations in [Na]0, or Na-K pump block. The sodium dependence of the overshoot potential is well reproduced despite the fact that steady state intracellular Na is proportional to extracellular Na, as in the experimental results of D. Ellis J. Physiol., Lond . 274, 211-240 (1977)). The model reproduces the responses to current pulses applied during the plateau and pacemaker phases. In particular, a substantial net decrease in conductance is predicted during the pacemaker depolarization despite the fact that the controlling process is an increase in conductance for the hyperpolarizing-activated current. The immediate effects of changing extracellular [K] are reproduced, including: (i) the shortening of action potential duration and suppression of pacemaker activity at high [K ]; (ii) the increased automaticity at moderately low [K ]; and (iii) the depolarization to the plateau range with premature depolarizations and low voltage oscillations at very low [K]. The ionic currents attributed to changes in Na-K pump activity are well reproduced. It is shown that the apparent K m for K activation of the pump depends strongly on the size of the restricted extracellular space. With a 30% space (as in canine Purkinje fibres) the apparent K m is close to the assumed real value of 1 mM . When the extracellular space is reduced to below 5% , the apparent K m increases by up to an order of magnitude. A substantial part of the pump is then not available for inhibition by low [K] b . These results can explain the apparent discrepancies in the literature concerning the K m for pump activation.

Từ khóa


Tài liệu tham khảo

10.1093/eurheartj/1.suppl_1.5

Attwell D., 1977, The voltage clamp of multicellular preparations, Biol., 31, 201

10.1007/BF00586939

10.1017/S0033583500005448

Attwell D., 1978, The interpretation of current-voltage relations: a Nemst-Planck analysis, Biol., 34, 81

Beeler G. W., 1978, Voltage clamping of multicellular myocardial preparations: capabilities and limitations of existing methods, Biol., 34, 219

10.1113/jphysiol.1970.sp009055

10.1113/jphysiol.1970.sp009057

Beeler G. W. & Reuter H. 1 9 7 7 Reconstruction ofthe action potential ofventricular myocardial fibres. J. Physiol. Lond. 268 177-210.

10.1113/jphysiol.1981.sp013888

Boyett M. R., 1981, 6 Two transient outward currents in cardiac Purkinje fibres, J. Physiol. Lond., 320, 32

Boyett M. R., 1980, Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart, Biol., 36, 1

Brown A. M., 1981, Sodium in single rate heart muscle cells, J. Physiol. Lond., 3

10.1113/jphysiol.1976.sp011435

10.1113/jphysiol.1980.sp013388

Brown H. F., 1983, Two components of `second inward current' in the rabbit SA node, J. Physiol. Lond., 334, 56P

10.1098/rspb.1984.0066

10.1098/rspb.1984.0067

10.1007/BF00581875

Carmeliet E. 1982 Induction and removal of inward-going rectification in sheep cardiac Purkinje fibres J Physiol Lond. 327 285-308.

10.1113/jphysiol.1965.sp007733

Chapman R. A., 1979, Excitation-contraction coupling in cardiac muscle, Biol., 35, 1

Chapman R. A. Goray A. & McGuigan J. A. S. 1 9 8 3 Sodium/calcium exchange in mammalian ventricular muscle: a study with sodium-sensitive microelectrodes. J. Physiol. Lond. 343 253-276.

10.1113/jphysiol.1980.sp013353

Clay J. R., 1981, Analysis of subthreshold pacemaker currents in chick embryonic heart cells J.Physiol, Lond., 312, 471

Clay J. R. & Shrier A. 1981 bDevelopmental changes in subthreshold pace-maker currents in chick embryonic heart cells. J. P h y s i o l . Land. 312 491-504.

Clusin W. T., 1983, Caffeine-induced current in embryonic heart cells: time course and voltage dependence, Am. J. Physiol., 254, H528

Cohen L Daut J. & Noble D. 1976 The effects of potassium and temperature on the pacemaker current in Purkinje fibres. J. P h y s i o l . Lond. 260 55-74.

10.1113/jphysiol.1978.sp012378

10.1113/jphysiol.1983.sp014691

10.1113/jphysiol.1980.sp013359

10.1161/01.RES.50.1.17

Colatsky T. J. & Gadsby D. C. 1980 Is tetrodotoxin block of background sodium channels in canine Purkinje fibres voltage-dependent? J. Physiol. Lond. 306 20 P.

10.1113/jphysiol.1979.sp012769

10.1038/294752a0

10.1007/BF00581631

Coraboeuf E., 1978, Shortening effect of tetrodotoxin on action potentials of the conducting system in the dog heart, J. Physiol. Lond., 280

10.1113/jphysiol.1981.sp013607

10.1113/jphysiol.1978.sp012539

10.1113/jphysiol.1981.sp013713

10.1113/jphysiol.1981.sp013714

10.1113/jphysiol.1982.sp014315

10.1113/jphysiol.1984.sp015114

10.1007/BF00587866

DiFrancesco D., 1982, Ionic current transients attributable to the N a-C a exchange process in the heart: computer model, J. Physiol. Lond., 328, 15P

DiFrancesco D., 1983, Demonstration of oscillatory variations in [Ca]i and membrane currents in a computer model of Ca-induced Ca release in mammalian Purkinje fibre and ventricular muscle, J. Physiol. Lond., 334

DiFrancesco D. Hart G. & Noble D. 1985 (In preparation.)

10.1113/jphysiol.1979.sp012741

10.1113/jphysiol.1980.sp013389

DiFrancesco D., 1980, ^ Reconstruction of Purkinje fibre currents in sodium-free solution, J. Physiol. Lond., 308

DiFrancesco D., 1980, If `iK2' is an inward current, how does it display potassium specificity? J. Physiol, Lond., 305, 14

DiFrancesco D., 1981, A model of cardiac electrical activity incorporating restricted extracellular spaces and the sodium potassium pump, J. Physiol. Lond., 320, 25

DiFrancesco D. & Noble D. 1982 Implications of the re-interpretation of f°r the modelling of the electrical activity of pacemaker tissues in the heart. In Cardiac rate and rhythm (ed. L. N. Bouman and H. J. Jongsma) pp. 93-128. The Hague: Martinus Nijhoff.

10.1007/BF00583259

10.1113/jphysiol.1979.sp013032

10.1113/jphysiol.1951.sp004653

Dudel J., 1967, The dynamic chloride component of membrane current in Purkinje fibres. Pfliigers Arch. Em. J, Physiol., 295, 197

10.1007/BF00362531

Ebihara L., 1980, The initial inward current in spherical clusters of chick embryonic heart cells. J. gen, Physiol., 75, 437

10.1113/jphysiol.1980.sp013298

Eisner D. A., 1979, Caffeine and tetracaine abolish the slow inward current in sheep cardiac Purkinje fibres, J. Physiol. Lond., 293, 76P

10.1113/jphysiol.1981.sp013819

10.1113/jphysiol.1977.sp012090

10.1113/jphysiol.1975.sp011026

Fischmeister R., 1981, The electrogenic Na/Ca exchange and the cardiac electrical activity. 1. Simulation on Purkinje fibre action potential, J. Physiol. Paris, 77, 705

10.1113/jphysiol.1973.sp010361

10.1073/pnas.77.7.4035

10.1016/S0070-2161(08)60692-9

Gadsby D. C., 1977, Two levels of resting potential in cardiac Purkinje fibers. J. gen, Physiol., 70, 725

Gadsby D. C., 1979, Electrogenic sodium extrusion in cardiac Purkinje fibers. J. gen, Physiol., 73, 819

Gibbons W. R., 1975, 0 Relationships between voltage and tension in sheep cardiac Purkinje fibers. J. gen, Physiol., 65, 345

Gibbons W. R., 1975, b Slow inward current and contraction of sheep cardiac Purkinje fibers. J. gen, Physiol., 65, 367

Gintant G. A. Datyuner N. B. & Cohen I. 1984 Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibres. Biophys. J. (In the press.)

10.1007/BF00362653

Hagiwara S. & Takahashi K. 1974 The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J. membrane Biol. 18 61-80.

10.1113/jphysiol.1963.sp007102

10.1113/jphysiol.1983.sp014631

Hart G., 1980, Adrenaline shifts the voltage dependence of the sodium and potassium components of it in sheep Purkinje fibres, J. Physiol. Lond., 308, 34P

Hart G., 1982, Analysis of the early outward currents in sheep Purkinje fibres, J. Physiol. Lond., 326, 68P

10.1113/jphysiol.1983.sp014483

10.1126/science.162.3856.916

10.1113/jphysiol.1969.sp008691

10.1113/jphysiol.1972.sp009786

Hille B., 1978, Potassium channels as multi-ion single-file pores. J. gen, Physiol., 72, 409

Hodgkin A. L. & Horowitz P. i960 Potassium contractures in single muscle fibres. J. Physiol. Lond. 153 386-403.

10.1113/jphysiol.1952.sp004764

10.1113/jphysiol.1949.sp004310

Horackova M., 1979, Sodium-calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic voltage-dependent mechanism. J. gen, Physiol., 73, 403

Hume J. R., 1983, Ionic currents in single isolated bullfrog atrial cells. J. gen, Physiol., 81, 153

10.1007/BF01067006

10.1007/BF00584965

10.1007/BF00586737

Tack I. I. B. Noble D. & Tsien R. W. 1975 Electric current flow in excitable cells. Oxford: Clarendon Press. (Paperback edition 1983.)

10.1146/annurev.ph.33.030171.002403

Kass R. S., 1982, The ionic basis of concentration related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J . Physiol, Lond., 322, 541

Kenyon J. L., 1979, 4-aminopyridine and the early outward current of sheep cardiac Purkinje fibres. J. gen, Physiol., 73, 139

10.1098/rspb.1982.0008

Lee, 1975, Activities of potassium and sodium ions in rabbit heart muscle. J. gen, Physiol., 65, 695

Lee E., 1983, A very slow inward current in single ventricular cells, J. Physiol. Lond., 345, 6P

Lee E., 1984, 0 A new, very slow inward Ca current in single ventricular cells of adult guinea-pig, J. Physiol. Lond., 346, 75P

Lee E. Lee K. S. Noble D. & Spindler A. J. 1984^ Further properties of the very slow inward currents in isolated single guinea-pig cells. J. Physiol. Lond. (In the press.)

10.1038/297498a0

10.1038/278269a0

10.1113/jphysiol.1966.sp008060

10.1113/jphysiol.1975.sp011080

10.1113/jphysiol.1978.sp012144

10.1038/286845a0

Mentrard D., 1982, The Na-Ca exchange generates a current in frog heart cells, J. Physiol. Lond., 334, 55P

Mitchell M. R., 1982, Action potentials and second inward current recorded from individual human ventricular muscle cells, J. Physiol. Lond., 332, 51P

10.1098/rspb.1983.0084

Miura D. S., 1977, The effect of extracellular potassium on the intracellular potassium ion activity and transmembrane potentials of beating canine cardiac Purkinje fibres. J. gen, Physiol., 69, 463

10.1113/jphysiol.1972.sp009722

Modern computing methods 1961 London: Her Majesty's Stationery Office.

Momose Y., 1983, An inwardly rectifying K+ current in bullfrog atrial cells, Biophys. J ., 41, 311a

Mullins L. J., 1977, A mechanism for N a/C a transport. J. gen, Physiol., 70, 681

Mullins L. J. 1981 Ion transport in the heart. New York: Raven Press.

10.1113/jphysiol.1963.sp007167

Niedergerke R., 1982, Changes offrog heart action potential due to intracellular calcium ions, J. Physiol. Lond., 328, 17

10.1113/jphysiol.1962.sp006849

Noble D., 1965, Electrical properties of cardiac muscle attributable to inward-going (anomalous) rectification. J. cell. comp, Physiol., 66, 127

Noble D. 1972 Conductance mechanisms in excitable cells. In Biomembranes 3 (ed. F. Kreuzer andj. F. G. Siegers) pp. 427-447. New York: Plenum Press. ♦

Noble D. 1979 The initiation of the heartbeat. 2nd edn. Oxford University Press.

Noble D. 1984 The surprising heart: A review of recent progress in cardiac electrophysiology. J . Physiol. Lond. (In the press.)

10.1098/rspb.1984.0065

10.1113/jphysiol.1968.sp008454

10.1113/jphysiol.1969.sp008689

Noble D., 1969, b Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of the membrane current. J . Physiol, Lond., 200, 233

10.1016/0010-468X(79)90045-X

10.1007/BF00587758

Powell T., 1981, The effect of noradrenaline on slow inward current in rat ventricular myocytes, J. Physiol. Lond., 319, 82P

10.1113/jphysiol.1967.sp008310

10.1113/jphysiol.1977.sp011656

10.1038/297501a0

10.1007/BF00587018

Sakmann B. & Trube G. 1984 Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J. Physiol. Lond. (In the press.)

Sheu S. S., 1982, Transmembrane Na+ and Ca 2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. gen, Physiol., 80, 325

Siegelbaum S. A., 1980, Calcium-activated transient outward current in calf cardiac Purkinje fibres. J . Physiol, Lond., 299, 485

10.1038/269611a0

Sjodin R. A., 1980, Contribution of Na/Ca transport to the resting membrane potential. J. gen, Physiol., 76, 99

10.1098/rspb.1982.0097

Tsien R. W., 1974, Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibres. J. gen, Physiol., 64, 293

Vasalle M., 1966, Cardiac pacemaker potentials at different extra- and intracellular K concentrations, Am. J. Physiol., 208, 770, 10.1152/ajplegacy.1965.208.4.770

Vassalle M., 1966, Analysis of cardiac pacemaker potentials using a `voltage-clamp' technique, Am. J. Physiol., 210, 1335, 10.1152/ajplegacy.1966.210.6.1335

10.1007/BF00584555

10.1113/jphysiol.1951.sp004667

10.1113/jphysiol.1952.sp004799

Weidmann S. 1956 Elektrophysiologie der Herzmuskelfaser. Bern: Huber.

10.1126/science.7355274

10.1007/BF00584312