Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiến lược song song hỗn hợp cho việc giải quyết các vấn đề đa quy mô liên kết ở biến dạng hữu hạn
Tóm tắt
Một chiến lược song song hỗn hợp để giải quyết các vấn đề vật liệu có tính đồng nhất đa quy mô liên kết trong điều kiện biến dạng hữu hạn được đề xuất. Cách tiếp cận này nhằm mục đích giảm thời gian tính toán và yêu cầu bộ nhớ của các mô phỏng không tuyến tính có liên kết sử dụng phân tích phần tử hữu hạn ở cả hai quy mô (FE
$$^2$$
). Ở cấp độ đầu tiên của thuật toán, một kỹ thuật phân chia miền không phù hợp, dựa trên phương pháp FETI kết hợp với phân tích mật độ tại giao diện của các miền con vĩ mô, được sử dụng. Một sơ đồ master–slave, phân bổ nhiệm vụ theo phần tử vĩ mô và áp dụng lập lịch động, sau đó được sử dụng cho mỗi miền con vĩ mô tạo thành cấp độ thứ hai của thuật toán. Chiến lược này cho phép song song hóa các mô phỏng FE
$$^2$$
trên các máy tính với kiến trúc bộ nhớ chia sẻ hoặc bộ nhớ phân tán. Chiến lược được đề xuất duy trì các tỷ lệ hội tụ tiệm cận bậc hai điển hình cho sơ đồ Newton–Raphson. Nhiều ví dụ được trình bày để chứng minh độ tin cậy và hiệu quả của chiến lược song song được đề xuất.
Từ khóa
#Chiến lược song song #Vật liệu đồng nhất đa quy mô #Phân tích phần tử hữu hạn #Phương pháp FETI #Sơ đồ master-slave #Tính toán không tuyến tínhTài liệu tham khảo
Bai Y (2008) Effect of loading history on necking and fracture. PhD thesis, Massachusetts Institute of Technology
Balzani D, Gandhi A, Klawonn A, Lanser M, Rheinbach O, Schröder J (2016) One-way and fully-coupled FE2 methods for heterogeneous elasticity and plasticity problems: parallel scalability and an application to thermo-elastoplasticity of dual-phase steels. Lecture notes in computational science and engineering, vol 113. Springer, Cham, pp. 91–112. doi:10.1007/978-3-319-40528-5_5
Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98
Belytschko T, Song JH (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537–563
Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo Ra (2016) Variational foundations and generalized unified theory of RVE-based multiscale models. Arch Comput Methods Eng 23(2):191–253. doi:10.1007/s11831-014-9137-5
de Souza Neto E, Peric D, Owen D (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester
de Souza Neto E, Blanco P, Sánchez P, Feijóo R (2015) An RVE-based multiscale theory of solids with micro-scale inertia and body force effects. Mech Mater 80:136–144
de Souza Neto E, Feijóo R (2006) Variational foundations of multi-scale constitutive models of solid:: Small and large strain kinematical formulation. LNCC R&D Report 16/2006, LNCC
Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227
Farhat C, Lesoinne M, Letallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544
Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330
Fritzen F, Leuschner M (2015) Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech 56(1):131–151
Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217
Geers M, Kouznetsova V, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182
Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385
Gitman I, Askes H, Sluys L (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534
Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189
Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679
Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Technische Universiteit Eindhoven
Kouznetsova V, Brekelmans W, Baaijens F (2001) Approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48
Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550
Kuramae H, Ikeya Y, Sakamoto H, Morimoto H, Nakamachi E (2010) Multi-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method. Int J Mech Sci 52(2):183–197
Lacour C, Maday Y (1997) Two different approaches for matching nonconforming grids: the Mortar element method and the Feti method. BIT Numer Math 37(3):720–738
Lloberas-Valls O, Rixen D, Simone A (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337–1366. doi:10.1002/nme.3286
Lloberas-Valls O, Rixen DJ, Simone A, Sluys LJ (2012) On micro-to-macro connections in domain decomposition multiscale methods. Comput Methods Appl Mech Eng 225–228:177–196. doi:10.1016/j.cma.2012.03.022
Malcher L (2012) Continuum modelling and numerical simulation of damage for ductile materials. Ph.D. thesis, Faculdade de Engenharia da Universidade do Porto
Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82:593–606
Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72:300–317
Miehe C, Schotte J, Schröder J (1999a) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16:372–382
Miehe C, Schröder J, Schotte J (1999b) Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418
Miehe C, Bayreuther CG (2007) On multiscale fe analyses of heterogeneous structures: from homogenization to multigrid solvers. Int J Numer Methods Eng 71(10):1135–1180. doi:10.1002/nme.1972
Mosby M, Matouš K (2015) Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. Int J Numer Methods Eng 102(3–4):748–765
Mosby M, Matouš K (2016) Computational homogenization at extreme scales. Extreme Mech Lett 6:68–74
Nguyen VP, Stroeven M, Sluys LJ (2012) Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comput Methods Appl Mech Eng 201–204:139–156
Perić D, Owen D, Honnor M (1992) A model for finite strain elasto-plasticity based on logarithmic strain: computational issues. Comput Methods Appl Mech Eng 94:35–61
Plews J, Duarte C (2015) Bridging multiple structural scales with a generalized finite element method. Int J Numer Methods Eng 102(3–4):180–201
Popp A (2012) Mortar methods for computational contact mechanics and general interface problems. Ph.D. thesis, Technische Universität München
Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391. doi:10.1002/nme.2614
Popp A, Wohlmuth B, Gee M, Wall W (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34(4):421–446
Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465. doi:10.1002/nme.2866. arXiv:1010.1724
Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336
Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305–319
Rahul, De S (2010) An efficient coarse-grained parallel algorithm for global localmultiscale computations onmassively parallel systems. Int J Numer Methods Eng 82(3):379–402
Reis FJP, Andrade Pires FM (2013) An adaptive sub-incremental strategy for the solution of homogenization-based multi-scale problems. Comput Methods Appl Mech Eng 257:164–182
Reis F, Andrade Pires F (2014) A mortar based approach for the enforcement of periodic boundary conditions on arbitrarily generated meshes. Comput Methods Appl Mech Eng 274:168–191
Rheinbach O (2009) Parallel iterative substructuring in structural mechanics. Arch Comput Methods Eng 16(4):425–463
Simo JC, Hughes TJR (1998) Computational inelasticity
Simo JC, Taylor RL, Wriggers P (1985) A perturbed lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180
Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192
Somer DD, de Souza Neto Ea, Dettmer WG, Perić D (2009) A sub-stepping scheme for multi-scale analysis of solids. Comput Methods Appl Mech Eng 198:1006–1016
Souza Neto E, Feijóo R (2010) Variational foundations of large strain multiscale solid constitutive models: kinematical formulation. In: Júnior MV, de Souza Neto E, Muñoz Rojas PA (eds) advanced computational materials modeling: from classical to multiscale techniques. Wiley, Weinheim
Stefanica D (2001) A numerical study of FETI algorithms for mortar finite element methods. SIAM J Sci Comput 23(4):1135–1160
Stefanica D (2005) Parallel FETI algorithms for mortars. Appl Numer Math 54(2):266–279
Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37(16):2285–2311
Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic–viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202
Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, Berlin