A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides

Springer Science and Business Media LLC - Tập 92 - Trang 419-438 - 2012
Iván López-Expósito1, Lourdes Amigo1, Isidra Recio1
1Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, Spain

Tóm tắt

This paper is a mini-review on the nutritional value of cheese with a focus on the identification of different biologically active peptides in cheese and the evidence built about their health benefits. From a nutritional point of view, cheese is a rich source of essential nutrients such as proteins, vitamins, minerals, and also short chain fatty acids that are important as part of a healthy diet. In addition, during cheese ripening, casein is hydrolyzed into a large variety of peptides by proteases and peptidases from milk, rennet, starter culture, and secondary microbial flora. Some of these peptides are structurally similar to endogenous peptides that play a crucial role in the organism as hormones, neurotransmitters, or antibiotics. Some of them can also survive gastrointestinal digestion or serve as precursors of the final peptide form. Furthermore, some of these cheese-derived peptides can interact with the same receptors than endogenous peptides and exert agonistic or antagonistic effects in the organism. This paper reviews the identification of different biologically active peptides in cheese and the evidence built about their health benefits. Activities have been mainly proven by using in vitro assays and in cell cultures, but in some cases the activity has been also assessed in animal models. In any case, there is still a long way to demonstrate the “hidden” health benefits of cheese in humans.干酪中生物活性肽的健康和营养-综述

Tài liệu tham khảo

Adamson NJ, Reynolds EC (1995) Characterisation of tryptic casein phosphopeptides prepared under industrially relevant conditions. Biotechnol Bioeng 45:196–204 Addeo F, Chianese L, Salzano A, Sacchi R, Capuccio U, Ferranti P, Malorni A (1992) Characterization of the 12 % trichloroacetic acid-insoluble oligopeptides of Parmiggiano Reggiano. J Dairy Res 59:401–411 Ardö Y, Lilbaek H, Kristiansen KR, Zakora M, Otte J (2007) Identification of large phosphopeptides from β-casein that characteristically accumulated during ripening of the semi-hard cheese Herrgård. Int Dairy J 17:513–524 Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB, Jakobsen MU, Kok FJ, Krauss RM, Lecerf JM, Legrand P, Nestel P, Risérus U, Sanders T, Sinclair A, Stender S, Tholstrup T, Willett W (2011) The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr 93:684–688 Ash A, Wilbey A (2010) The nutritional significance of cheese in the UK diet. Int J Dairy Technol 63:305–319 Barba G, Russo P (2006) Dairy foods, dietary calcium and obesity: a short review of evidence. Nutr Metab Cardiovasc Dis 16:445–451 Brantl V, Teschemacher H, Blasig J, Henschen A, Lottspeich F (1981) Opioid activities of beta-casomorphins. Life Sci 28:1903–1909 Belury MA (2002) Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 132:2995–2998 Bennett T, Desmond A, Harrington M, McDonagh D, FitzGerald R, Flynn A, Cashman KD (2000) The effect of high intakes of casein and casein phosphopeptides on calcium absorption in the rat. Br J Nutr 83:673–680 Bouhallabb S, Cinga V, Aít-Oukhatar N, Bureau F, Neuville D, Arhan P, Maubois JL, Bouglé D (2002) Influence of various phosphopeptides of caseins on iron absorption. J Agric Food Chem 50:7127–7130 Boutrou R, Coirre E, Jardin J, Léonil (2010) Phosphorylation and coordination bond of mineral inhibit the hydrolysis of the β-casein (1–25) peptide by intestinal Brush-Border membrane enzymes. J Agric Food Chem 58:7955–7961 Brandsch M, Brust P, Neubert K, Ermisch A (1994) β-Casomorphins chemical signals of intestinal transport systems. In: Brantl H, Teschemacher H (eds) β-Casomorphins and related peptides. Recent development. VCH, Weinheim pp 207–219 Bütikofer U, Meyer J, Sieber R, Walther B, Wechsler D (2008) Occurrence of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin. J Dairy Sci 91:29–38 Bütikofer U, Meyer J, Sieber R, Wechsler D (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int Dairy J 17:968–975 Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, Jolles P, Fiat AM (1998) Casein peptides release and passage to the blood in human during digestion of milk or yogurt. Biochimie 80:155–165 Chin SF, Liu W, Storkson JM, Ha YL, Pariza MW (1992) Dietary sources of conjugated dieonic isomers of linoleic acid, a newly recognized class of anticarconogens. J Food Compos Anal 5:185–197 Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83:1187–1195 Claustre J, Toumi F, Trompette A, Jourdan G, Guignard H, Chayvialle JA, Plaisance P (2002) Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am J Physiol Gastrointest Liver Physiol 283:521–528 Cochrane NJ, Reynolds EC (2009) Casein phosphopeptides in oral health. In: Wilson M (ed) Food constituents and oral health: current status and future prospects. CRC, Boca Raton, pp 185–219 Daniel H, Vohwinkel M, Rehner G (1990) Effect of casein and beta-casomorphins on gastrointestinal motility in rats. J Nutr 120:252–257 De Moreno de LeBlanc A, Matar C, LeBlanc N, Perdigon G (2005) Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Res 7:R477–R486 De la Fuente MA, Juárez M (2001) Los quesos: Una fuente de nutrientes. Aliment Nutr Salud 8:75–83 De Noni I, Cattaneo S (2010) Occurrence of beta-casomorphins 5 and 7 in commercial dairy products and in their digests following in-vitro simulated gastro-intestinal digestion. Food Chem 119:560–566 De Simone C, Ferranti P, Picariello G, Scognamiglio I, Dicitore A, Addeo F, Chianese L, Stiuso P (2011) Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Mol Nutr Food Res 55:229–238 De Simone C, Picariello G, Mamone G, Stiuso P, Dicitore A, Vanacore D, Chianese L, Addeo F, Ferranti P (2009) Characterization and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey. J Pept Sci 15:251–258 Dupas C, Adt I, Cottaz A, Boutrou R, Molle D, Jardin J, Jouvet T, Degraeve PA (2009) Chromatographic procedure for semi-quantitative evaluation of caseinphosphopeptides in cheese. Dairy Sci Technol 89:519–529 Ebringer L, Ferencik M, Krajcovic J (2008) Beneficial health effects of milk and fermented dairy products—review. Folia Microbiol 53:378–394 European Food Safety Authority (2009) Scientific Report prepared by a DATEX working group on the potential health impact of β-casomorphins and related peptides. EFSA Sci Rep 231:1–107 Erba D, Ciappellano S, Testolin G (2001) Effect of casein phosphopeptides on inhibition of calcium intestinal absorption due to phosphate. Nutr Res 21:649–656 Erba D, Ciappellano S, Testolin G (2002) Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. J Nutr 18:743–746 Ferranti P, Barone F, Chianese L, Addeo F, Scaloni A, Pellegrino L, Resmini P (1997) Phosphopeptides from Grana Padano cheese: nature, origin and changes during ripening. J Dairy Res 64:601–615 Ferraretto A, Gravaghi C, Fiorelli A, Tettamanti G (2003) Casein-derived bioactive phosphopeptides: role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells. FEBS Lett 551:92–98 Floris R, Recio I, Berkhout B, Visser S (2003) Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr Pharm Des 9:1257–1273 Froetschel MA (1996) Bioactive peptides in digesta that regulate gastrointestinal function and intake. Am Soc Animal Sci 74:2500–2508 Gagnaire V, Molle D, Herrouin M, Leonil J (2001) Peptides identified during Emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49:4402–4413 German JB (1999) Butyric acid: a role in cancer prevention. Nutr Bull 24:293–299 German JB, Dillard CJ (2006) Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 46:57–92 Gómez-Ruiz JA, Ramos M, Recio I (2002) Angiotensin converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int Dairy J 12:697–706 Gómez-Ruiz JA, Ramos M, Recio I (2004a) Angiotensin-converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 14:1075–1080 Gómez-Ruiz JA, Ramos M, Recio I (2004b) Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1054:269–277 Gómez-Ruiz JA, Taborda G, Amigo L, Recio I, Ramos M (2006) Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur Food Res Technol 223:595–601 Gravaghi C, Del Favero E, Cantu L, Donetti E, Bedoni M, Fiorilli A, Tettamanti G, Ferrareto A (2007) Casein phosphopeptide promotion of calcium uptake in HT-29 cell-relation between biological activity and supramolecular structure. FEBS J 274:4999–5011 Grecksch G, Schweigert C, Matthies H (1981) Evidence for analgesic activity of beta-casomorphin in rats. Neurosci Lett 27:325–328 Gupta A, Mann B, Kumar R, Sangwan RB (2009) Antioxidant activity of Cheddar cheeses at different stages of ripening. Int J Dairy Technol 62:339–347 Gupta A, Mann B, Kumar R, Sangwan RB (2010) Identification of antioxidant peptides in Cheddar cheese made with adjunct culture Lactobacillus casei ssp casei 300. Milchwissenschaft 65:396–399 Hansen M, Sandstrom B, Jensen M, Sorensen SS (1997a) Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal. J Pediatr Gastroenterol Nutr 24:56–62 Hansen M, Sandstrom B, Jensen M, Sorensen SS (1997b) Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. J Trace Elem Med Biol 11:143–149 Heaney RP (1996) Calcium. In: Bilezkian JP, Raisz GA, Rodan GA (eds) Principles of bone biology. Academic, New York pp 1007–1018 Hernández-Ledesma B, Contreras MM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interf Sci 165:23–35 Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L (2005) Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin: identification of active peptides by HPLC–MS/MS. J Agric Food Chem 53:588–593 Hill RD, Lahov E, Givol D (1974) A rennin-sensitive bond in alpha and beta casein. J Dairy Res 41:147–153 IDF (2010) The world dairy situation 2010. Bulletin of the IDF 446:197 Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Bälter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89:1425–1432 Jarmolowska B, Kostyra E, Krawczuck S, Kostyra H (1999) β-Casomorphin-7 isolated from Brie cheese. J Sci Food Agr 79:1788–1792 Keys A (1984) Serum cholesterol response to dietary cholesterol. Am J Clin Nutr 40:351–359 Kitts DD (2005) Antioxidant properties of casein phosphopeptides. Trends Food Sci 16:549–554 Kitts DD, Nakamura S (2006) Calcium-enriched casein phosphopeptide stimulates release of IL-6 cytokine in human epithelial intestinal cell line. J Dairy Res 73:44–48 Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M (2002) Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37:343–350 Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960 Kostyra E, Sienkiewicz-Sztapka E, Jarmolowska B, Krawczuck S, Kostyra H (2004) Opioid peptides derived from milk proteins. Polish J Food Nutr Sci 13:25–35 Lee YS, Noguchi T, Naito H (1980) Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr 43:457–467 Legrand P, Rioux V (2010) The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 45:941–946 Lignitto L, Cavatorta V, Balzan S, Gabai G, Galaverna G, Novelli E, Sforza S, Segato S (2010) Angiotensin-converting enzyme-inhibitory activity of water-soluble extracts of Asiago d’ allevo cheese. Int Dairy J 20:11–17 Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60:763–771 López-Expósito I, Recio I (2006) Antibacterial activity of peptides and folding variants from milk proteins. Int Dairy J 16:1294–1305 López-Expósito I, Recio I (2008) Protective effects of milk peptides: antibacterial and antitumor properties. Adv Exp Med Biol 606:271–293 Losito I, Carbonara T, De Bari MD, Gobetti M, Palmiseno F, Rizzello CG, Zambonin PG (2006) Identification of peptides in antimicrobial fractions of cheese extracts by electrospray ionization ion trap mass spectrometry coupled to a two-dimensional liquid chromatographic separation. Rapid Commun Mass Spectrom 20:447–455 Lund M, Ardö Y (2004) Purification and identification of water soluble phosphopeptides from cheese using Fe(III) affinity chromatography and mass spectrometry. J Agric Food Chem 52:6616–6622 Mader JS, Salsman JS, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4:612–624 Malkoski M, Dashper SG, O’Brien-Simpson NM, Talbo GH, Macris M, Cross KJ (2001) Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 45:2309–2315 Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B (2012) Antihypertensive peptides from food proteins: a review. Food Funct 3:350–361 Mc Namara DJ (2000) Review: dietary cholesterol and atherosclerosis. Biochim Biophys Acta 1529:310–320 Meisel H (1998) Overview on milk protein-derived peptides. Int Dairy J 8:363–373 Meisel H, FitzGerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1295 Meisel H, Frister H (1988) Chemical characterization of a caseino-phosphopeptide isolated from in vitro digests of a casein diet. Biol Chem Hoppe Seyler 369:1275–1279 Meyer J, Bütikofer U, Walther B, Wechsler D, Sieber R (2009) Changes in angiotensin-converting enzyme-inhibition and concentrations of the tripeptides Val-Pro-Pro and Ile-Pro-Pro during ripening of different cheese varieties. J Dairy Sci 92:826–836 Miguel M, Gómez-Ruiz JA, Recio I, Aleixandre A (2010) Changes in arterial blood pressure after single oral administration of milk casein-derived peptides in spontaneously hypertensive rats. Mol Nutr Food Res 54:1–6 Mills S, Ross RP, Hill C, FitzGerald GF, Stanton C (2011) Milk intelligence: mining milk for bioactive substances associated with human health. Int Dairy J 21:377–401 Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H (2011) Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2:18–27 Naito H, Suzuki H (1974) Further evidence for the formation of phosphopeptide in the intestinal lumen from dietary β-casein. Agric Biol Chem 38:1534–1545 O’Brien NM, O’Connor TP (2004) Nutritional aspects of cheese. In: Fox PF, Guinee TP, Cogan TM, McSweeney PLH (eds) Cheese: chemistry, physics and microbiology. General aspects, vol 1, 3rd edn. Elsevier Academic, London pp 576–581 Ong L, Henriksson A, Shah NP (2007) Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Lait 87:149–165 Ong L, Shah NP (2008) Influence of probiotic Lactobacillus acidophilus and L. helveticus on proteolysis, organic acid profiles, and ACE-inhibitory activity of Cheddar cheeses ripened at 4, 8, and 12 °C. J Food Sci 73:111–120 Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40:283–298 Parodi PW (2004) Milk fat in human nutrition. Aust J Dairy Technol 59:3–59 Parodi PW (2007) A role for milk proteins and their peptides in cancer prevention. Curr Pharm Des 13:813–828 Parrot S, Degraeve P, Curia C, Martial-Gros A (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung 47:87–94 Paul M, van Hekken DL (2010) Assessing antihypertensive activity in native and model queso fresco cheeses. J Dairy Sci 94:2280–2284 Pérès JM, Bouhallab S, Bureau F, Neuville D, Maubois JL, Devroede G, Arhan R, Bouglé D (1999) Mechanism of absorption of casein phosphopeptide bound iron. J Nutr Biochem 10:215–222 Phelan M, Aherne A, FitzGerald RJ, O’Brien NM NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643–654 Phelan M, Kerins D (2011) The potential role of milk-derived peptides in cardiovascular disease. Food Funct 2:153–167 Pritchard SR, Phillips M, Kailasapathy K (2010) Identification of bioactive peptides in commercial Cheddar cheese. Food Res Int 43:1545–1548 Renner E (1987) Nutritional aspects of cheese In: Fox PF (ed) Cheese: chemistry, physics and microbiology. General aspects, vol 1. Elsevier Applied Science, London pp 345–363 Rioux V, Catheline D, Bouriel M, Legrand P (2005) Dietary myristic acid at physiologically relevant levels increase the tissue content of C20:5 n−3 and C20:3 n−6 in the rat. Reprod Nutr Dev 45:599–612 Rioux V, Daval S, Guillou H, Jan S, Legrand P (2003) Although is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. Reprod Nutr Dev 43:419–430 Rioux V, Legrand P (2007) Saturated fatty acids: simple molecular structures with complex cellular functions. Curr Opin Clin Nutr Metab Care 10:752–758 Rizzello CG, Losito I, Gobetti M, Carbonara T, De Bari MD, Zambonin PG (2005) Antibacterial activity of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci 88:2348–2360 Roudot-Algaron F, Le Bars D, Kerhoas L, Einhorn J, Gripon JC (1994) Phosphopeptides from Comté cheese: nature and origin. J Food Sci 59(544-547):560 Roy MK, Kuwabara Y, Hara Y, Watanabe Y, Tamai Y (2002) Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL-60) cells. J Dairy Sci 85:2065–2074 Ryder JW, Portocarrero CP, Song XM (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50:1149–1157 Ryhänen EL, Pihlanto-Leppälä A, Pahkala E (2001) A new type of ripened, low-fat cheese with bioactive properties. Int Dairy J 11:441–447 Saito T, Nakamura T, Kitazawa H, Kawai Y, Itoh T (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J Dairy Sci 83:1434–1440 Scholtz-Ahrens KE, Schrezenmeir J (2000) Effects of bioactive substances in milk on mineral and trace element metabolism with special reference to casein phosphopeptides. Br J Nutr 84(suppl19):S147–S153 Schuster GS, Dirksen TR, Ciarlone AE, Burnett GW, Reynolds MT, Lankford MT (1980) Anticaries and antiplaque potential of free fatty acids in vitro and in vivo. Pharm Ther Dent 5:25–33 Sforza S, Ferroni L, Galaverna G, Dossena A, Marchelli R (2003) Extraction, semi-quantification, and fast on-line identification of oligopeptides in Grana Padano cheese by HPLC–MS. J Agric Food Chem 51:2130–2135 Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthane on the auto-oxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948 Sieber R, Bütikofer U, Egger Ch, Portmann R, Walther B, Wechsler D (2010) ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Sci Technol 90:47–73 Sienkiewicz-Szlapka E, Jarmolowska B, Krawczuk S, Kostyra E, Iwan M (2009) Contents of agonistic and antagonistic peptides in different cheese varieties. Int Dairy J 19:258–263 Singh TK, Fox PF, Healy A (1995) Water-soluble peptides in Cheddar cheese: isolation and identification of peptides in the diafiltration retentate of the water-soluble fraction. J Dairy Res 62:629–640 Singh TK, Fox PF, Healvy (1997) Isolation and identification of further peptides in the diafiltration retentate of the water-soluble fraction of Cheddar cheese. J Dairy Res 64:433–443 Singh M, Rosen CL, Chang K, Haddad GG (1999) Plasma β-casomorphin-7 immunoreactive peptide increases after milk ingestion in newborn but not in adult dogs. Pediatr Res 26:34–38 Smacchi E, Gobbetti M (1998) Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin-I-converting enzyme. Enzym Microb Technol 22:687–694 Stepaniak L, Fox PF, Sorhaug T, Grabska J (1995) Effect of peptides from the sequence 58–72 of beta-casein on the activity of endopeptidase, aminopeptidase, and X-prolyl-dipeptidyl aminopeptidase from Lactococcus lactis spp lactis MG1363. J Agric Food Chem 43:849–853 Stepaniak L, Jedrychowski L, Wroblewska B, Sørhaug T (2001) Immunoreactivity and inhibition of angiotensin-I converting enzyme and lactococcal oligopeptidase by peptides from cheese Ital. J Food Sci 13:373–381 Taira T, Hilaviki LA, Aalto J, Hilaviki I (1990) Effect of beta-casomorphin on neonatal sleep in rats. Peptides 11:1–4 Teucher B, Majsak-Newman G, Dainty JR, McDonagh D, FitzGerald RJ, Fairweather-Tait S (2006) Calcium absorption is not increased by caseinophosphopeptides. Am J Clin Nutr 84:162–166 Tholstrup T (2006) Dairy products and cardiovascular disease. Curr Opin Lipidol 17:1–10 Thormar H, Hilmarsson H (2007) The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 150:1–11 Thormar H, Isaacs EE, Kim KS, Brown HR (1994) Inactivation of visna virus and other enveloped viruses by free fatty acids and monoglycerides. Ann N Y Acad Sci 724:465–471 Tidona F, Criscione A, Guastella AM, Zuccaro A, Bordonaro S, Marletta D (2009) Bioactive peptides in dairy products. Ital J Anim Sci 8:315–340 Tirelli A, De Noni I, Resmini P (1997) Bioactive peptides in milk products. Ital J Food Sci 2:91–98 Toelstede S, Hofmann T (2008) Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J Agric Food Chem 56:2795–2804 Torres-Llanez MJ, González-Córdova AF, Hernández-Mendoza A, Garcia HS, Vallejo-Cordoba B (2011) Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. J Dairy Sci 94:3794–3800 Tulipano G, Bulgari O, Chessa S, Nardone A, Cocchi D, Caroli A (2010) Direct effects of casein phosphopeptides on growth and differentiation of in vitro cultured osteoblastic cells (MC3T3-E1). Regul Pept 160:168–174 Umbach M, Teschemacher H, Praetorius K, Hirschhauser R, Bostedt H (1985) Demonstration of a beta-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regul Pept 12:223–230 Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43:553–587 Walther B, Schmid A, Sieber R, Wehrmüller K (2008) Cheese in nutrition and health. Dairy Sci Technol 88:389–405 Wang H, Cui L, Chen W, Zhang H (2011) An application in Gouda cheese manufacture for a strain of Lactobacillus helveticus ND01. Int J Dairy Technol 64:386–393 Yang M, Cook ME (2003) Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-alpha production, and modifies splenocyte cytokines production. Exp Biol Med 228:51–58 Yang N, Strøm MB, Mekonnen SM, Svendsen JS, Rekdal Ø (2004) The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. J Pept Sci 10:37–46 Yasuda S, Ohkura N, Suzuki K, Yamasaki M, Nishiyama K, Kobayashi H, Hoshi Y, Kadooka Y, Igoshi K (2010) Effects of highly ripened cheeses on HL-60 human leukemia cells: antiproliferative activity and induction of apoptotic DNA damage. J Dairy Sci 93:1393–1400 Zemel ML, Miller SL (2004) Dietary calcium and dairy modulation of adiposity and obesity risk. Nutr Rev 62:125–131