A midlife crisis for the mitochondrial free radical theory of aging
Tóm tắt
Since its inception more than four decades ago, the Mitochondrial Free Radical Theory of Aging (MFRTA) has served as a touchstone for research into the biology of aging. The MFRTA suggests that oxidative damage to cellular macromolecules caused by reactive oxygen species (ROS) originating from mitochondria accumulates in cells over an animal’s lifespan and eventually leads to the dysfunction and failure that characterizes aging. A central prediction of the theory is that the ability to ameliorate or slow this process should be associated with a slowed rate of aging and thus increased lifespan. A vast pool of data bearing on this idea has now been published. ROS production, ROS neutralization and macromolecule repair have all been extensively studied in the context of longevity. We review experimental evidence from comparisons between naturally long- or short-lived animal species, from calorie restricted animals, and from genetically modified animals and weigh the strength of results supporting the MFRTA. Viewed as a whole, the data accumulated from these studies have too often failed to support the theory. Excellent, well controlled studies from the past decade in particular have isolated ROS as an experimental variable and have shown no relationship between its production or neutralization and aging or longevity. Instead, a role for mitochondrial ROS as intracellular messengers involved in the regulation of some basic cellular processes, such as proliferation, differentiation and death, has emerged. If mitochondrial ROS are involved in the aging process, it seems very likely it will be via highly specific and regulated cellular processes and not through indiscriminate oxidative damage to macromolecules.
Tài liệu tham khảo
Harman D: Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956, 11: 298-300. 10.1093/geronj/11.3.298.
Harman D: The biologic clock: the mitochondria?. J Am Geriat Soc. 1972, 20: 145-147.
Harman D: The aging process. Proc Natl Acad Sci U S A. 1981, 78: 7124-7128. 10.1073/pnas.78.11.7124.
Amaral S, Amaral A, Ramalho-Santos J: Aging and male reproductive function: a mitochondrial perspective. Front Biosci (Schol Ed). 2013, 5: 181-197.
Hauser DN, Hastings TG: Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013, 51: 35-42.
Johnson ML, Robinson MM, Nair KS: Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab. 2013, 24: 247-256. 10.1016/j.tem.2012.12.003.
Vitale G, Salvioli S, Franceschi C: Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013, 9: 228-240. 10.1038/nrendo.2013.29.
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 2009, 417: 1-13. 10.1042/BJ20081386.
Sohal RS, Brunk UT: Mitochondrial production of pro-oxidants and cellular senescence. Mutat Res. 1992, 275: 295-304. 10.1016/0921-8734(92)90033-L.
Jamieson D, Chance B, Cadenas E, Boveris A: The relation of free radical production to hyperoxia. Ann Rev Physiol. 1986, 48: 703-709. 10.1146/annurev.ph.48.030186.003415.
Turrens JF, Freeman BA, Crapo JD: Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch Biochem Biophys. 1982, 217: 411-421. 10.1016/0003-9861(82)90519-7.
Law R, Bukwirwa H: The physiology of oxygen delivery. Update Anaesthesia. 1999, 10: 20-25.
Felix MA, Braendle C: The natural history of Caenorhabditis elegans. Curr Biol. 2010, 20: R965-R969. 10.1016/j.cub.2010.09.050.
Honda S, Ishii N, Suzuki K, Matsuo M: Oxygen dependent perturbation of lifespan and the aging rate in the nematode. J Gerontol. 1993, 48: B57-B61. 10.1093/geronj/48.2.B57.
Yanase S, Ishii N: Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans. J Radiat Res. 2008, 49: 211-218. 10.1269/jrr.07043.
Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D: Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on lifespan in Caenorhabditis elegans. Genes Dev. 2008, 22: 3236-3241. 10.1101/gad.504808.
Van Voorhies WA, Ward S: Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol. 2000, 203: 2467-2478.
Annefeld M, Erne B, Rasser Y: Ultrastructural analysis of rat articular cartilage following treatment with dexamethasone and glycosaminoglycan-peptide complex. Clin Exp Rheumatol. 1990, 8: 151-157.
Barth E, Stämmler G, Speiser B, Schaper J: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992, 24: 669-681. 10.1016/0022-2828(92)93381-S.
Frederiks WM, Bosch KS: Localization of superoxide dismutase activity in rat tissues. Free Radic Biol Med. 1997, 22: 241-248. 10.1016/S0891-5849(96)00328-0.
Horvath S: DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14: R115-10.1186/gb-2013-14-10-r115.
Robb EL, Christoff CA, Maddalena LA, Stuart JA: Mitochondrial reactive oxygen species in animal cells: relevance to aging and normal physiology. Can J Zool. 2014, : -In press
Sanz A, Fernández-Ayala DJ, Stefanatos RK, Jacobs HT: Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging (Albany NY). 2010, 2: 200-223.
Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, Ungvari Z: Comparison of endothelial function, O2–* and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol. 2006, 291: H2698-H2704.
Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD: Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell. 2007, 6: 607-618. 10.1111/j.1474-9726.2007.00312.x.
Brown JC, McClelland GB, Faure PA, Klaiman JM, Staples JF: Examining the mechanisms responsible for lower ROS release rates in liver mitochondria from the long-lived house sparrow (Passer domesticus) and big brown bat (Eptesicus fuscus) compared to the short-lived mouse (Mus musculus). Mech Ageing Dev. 2009, 130: 467-476. 10.1016/j.mad.2009.05.002.
Montgomery MK, Hulbert AJ, Buttemer WA: The long life of birds: the rat-pigeon comparison revisited. PLOS One. 2011, 6: e24138-10.1371/journal.pone.0024138.
Kuzmiak S, Glancy B, Sweazea KL, Willis WT: Mitochondrial function in sparrow pectoralis muscle. J Exp Biol. 2012, 215: 2039-2050. 10.1242/jeb.065094.
Brunet-Rossinni AK: Reduced free radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev. 2004, 125: 11-20. 10.1016/j.mad.2003.09.003.
Swindell WR: Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012, 11: 254-270. 10.1016/j.arr.2011.12.006.
Walsh ME, Shi Y, Van Remmen H: The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med. 2014, 66: 88-99.
Smith RA, Hartley RC, Cochemé HM, Murphy MP: Mitochondrial pharmacology. Trends Pharmacol Sci. 2012, 33: 341-352. 10.1016/j.tips.2012.03.010.
Brown GC, Borutaite V: There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 2012, 12: 1-14. 10.1016/j.mito.2011.02.001.
Hickey AJ, Jüllig M, Aitken J, Loomes K, Hauber ME, Phillips AR: Birds and longevity: does flight driven aerobicity provide an oxidative sink?. Ageing Res Rev. 2012, 11: 242-253. 10.1016/j.arr.2011.12.002.
Ristow M, Schmeisser S: Extending life span by increasing oxidative stress. Free Radical Biol Med. 2011, 51: 327-336. 10.1016/j.freeradbiomed.2011.05.010.
Weisiger RA, Fridovich I: Mitochondrial superoxide dismutase: site of synthesis and intramitochondrial localization. J Biol Chem. 1973, 248: 4793-4796.
Fridovich I: Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995, 64: 97-112. 10.1146/annurev.bi.64.070195.000525.
Okado-Matsumoto A, Fridovich I: Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, ZnSOD in mitochondria. J Biol Chem. 2001, 276: 28388-28393. 10.1074/jbc.M100605200.
Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M: Glutathione peroxidase family – an evolutionary overview. FEBS J. 2008, 275: 3959-3970. 10.1111/j.1742-4658.2008.06542.x.
Cox AG, Winterbourn CC, Hampton MB: Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signaling. Biochem J. 2009, 425: 313-325.
Murphy MP: Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal. 2012, 15: 476-495.
Rindler PM, Plafker SM, Szweda L, Kinter M: High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem. 2013, 288: 1979-1990. 10.1074/jbc.M112.412890.
Holmgren A, Lu J: Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 2010, 396: 120-124. 10.1016/j.bbrc.2010.03.083.
Nicholls P: Classical catalase: ancient and modern. Arch Biochem Biophys. 2012, 525: 95-101. 10.1016/j.abb.2012.01.015.
Andziak B, O’Connor TP, Buffenstein R: Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev. 2005, 126: 1206-1212. 10.1016/j.mad.2005.06.009.
Page MM, Richardson J, Wiens BE, Tiedtke E, Peters CW, Faure PA, Burness G, Stuart JA: Antioxidant enzyme activities are not broadly correlated with longevity in 14 endotherm species. Age (Dordr). 2010, 32: 255-270. 10.1007/s11357-010-9131-2.
Salway KD, Page MM, Faure PA, Burness G, Stuart JA: Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species. Age (Dordr). 2011, 33: 33-47. 10.1007/s11357-010-9157-5.
Salway KD, Gallagher EJ, Stuart JA: Longer-lived mammals and birds have higher levels of heat shock proteins. Mech Age Devel. 2011, 132: 287-297. 10.1016/j.mad.2011.06.002.
Jang YC, Van Remmen H: The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol. 2009, 44: 256-260. 10.1016/j.exger.2008.12.006.
Pérez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A: The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell. 2009, 8: 73-75. 10.1111/j.1474-9726.2008.00449.x.
Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A: Is the oxidative stress theory of aging dead?. Biochim Biophys Acta. 2009, 1790: 1005-1014. 10.1016/j.bbagen.2009.06.003.
Hu D, Cao P, Thiels E, Chu CT, Wu G, Oury TD, Klann E: Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem. 2007, 87: 372-384. 10.1016/j.nlm.2006.10.003.
Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang T, Nelson J, Strong R, Richardson A: Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics. 2003, 16: 29-37. 10.1152/physiolgenomics.00122.2003.
Huang T, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ: Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci. 2000, 55: B5-B9.
Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang T: CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005, 24: 367-380. 10.1038/sj.onc.1208207.
Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005, 308: 1909-1911. 10.1126/science.1106653.
Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ, Wolfe N, Van Remmen H, Richardson A: Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci. 2007, 62: 932-942. 10.1093/gerona/62.9.932.
Zhang Y, Ikeno Y, Qi W, Chaudhuri A, Li Y, Bokov A, Thorpe SR, Baynes JW, Epstein C, Richardson A, Van Remmen H: Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J Gerontol A Biol Sci Med Sci. 2009, 64: 1212-1220.
Pérez VI, Cortez LA, Lew CM, Rodriguez M, Webb CR, Van Remmen H, Chaudhuri A, Qi W, Lee S, Bokov A, Fok W, Jones D, Richardson A, Yodoi J, Zhang Y, Tominaga K, Hubbard GB, Ikeno Y: Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice. J Gerontol A Biol Sci Med Sci. 2011, 66: 1286-1299.
Salmon AB, Pérez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, Richardson A: Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J. 2009, 23: 3601-3608. 10.1096/fj.08-127415.
Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER: Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A. 2001, 98: 12920-12925. 10.1073/pnas.231472998.
Wanagat J, Dai DF, Rabinovitch P: Mitochondrial oxidative stress and mammalian healthspan. Mech Ageing Dev. 2010, 131: 527-535. 10.1016/j.mad.2010.06.002.
Ernst IM, Pallauf K, Bendall JK, Paulsen L, Nikolai S, Huebbe P, Roeder T, Rimbach G: Vitamin E supplementation and lifespan in model organisms. Ageing Res Rev. 2013, 12: 365-375. 10.1016/j.arr.2012.10.002.
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C: Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012, 3: CD007176
Stuart JA, Robb EL: Health effects of resveratrol and its derivatives. Bioactive Polyphenols from Wine Grapes. SpringerBriefs in Cell Biology. 2013, New York, NY, USA: Springer Press, 9-25.
Magwere T, West M, Riyahi K, Murphy MP, Smith RA, Partridge L: The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech Ageing Dev. 2006, 127: 356-370. 10.1016/j.mad.2005.12.009.
Rodriguez-Cuenca S, Cocheme HM, Logan A, Abakumova I, Prime TA, Rose C, Vidal-Puig A, Smith AC, Rubinsztein DC, Fearnley IM, Jones BA, Pope S, Heales SJ, Lam BY, Neogi SG, McFarlane I, James AM, Smith RA, Murphy MP: Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wildtype mice. Free Radic Biol Med. 2010, 48: 161-172. 10.1016/j.freeradbiomed.2009.10.039.
Selsby JT, Judge AR, Yimlamai T, Leeuwenburgh C, Dodd SL: Life long calorie restriction increases heat shock proteins and proteasome activity in soleus muscles of Fisher 344 rats. Exp Gerontol. 2005, 40: 37-42. 10.1016/j.exger.2004.08.012.
Hepple RT, Qin M, Nakamato H, Goto S: Caloric restriction optimizes the proteasome pathway with aging in rat plantaris muscle: implications for sarcopenia. Am J Physiol. 2008, 295: R1231-R1237.
Li F, Zhang L, Craddock J, Bruce-Keller AJ, Dasuri K, Nguyen A, Keller JN: Aging and dietary restriction effects on ubiquitination, sumoylation, and the proteasome in the heart. Mech Ageing Dev. 2008, 129: 515-521. 10.1016/j.mad.2008.04.007.
Bonelii MA, Desenzani S, Cavallini G, Donati A, Romani AA, Bergamini E, Borghetti AF: Low-level caloric restriction rescues proteasome activity and Hsc70 level in liver of aged rats. Biogerontology. 2008, 9: 1-10. 10.1007/s10522-007-9111-9.
Pamplona R: Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta. 2008, 1777: 1249-1262. 10.1016/j.bbabio.2008.07.003.
Stuart JA, Liang P, Luo X, Page MM, Gallagher EJ, Christoff CA, Robb EL: A comparative cellular and molecular biology of longevity database. Age (Dordr). 2013, 35: 1937-1947. 10.1007/s11357-012-9458-y.
Vijg J, Suh Y: Genome instability and aging. Annu Rev Physiol. 2013, 75: 645-668. 10.1146/annurev-physiol-030212-183715.
Page MM, Stuart JA: Activities of DNA base excision repair enzymes in liver and brain correlate with body mass, but not lifespan. Age (Dordr). 2012, 34: 1195-1209. 10.1007/s11357-011-9302-9.
Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA: No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med. 2005, 38: 737-745. 10.1016/j.freeradbiomed.2004.12.003.
Cabelof DC, Ikeno Y, Nyska A, Busuttil RA, Anyangwe N, Vijg J, Matherly LH, Tucker JD, Wilson SH, Richardson A, Heydari AR: Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. Cancer Res. 2006, 66: 7460-7465. 10.1158/0008-5472.CAN-06-1177.
Park S-H, Kang H-J, Kim H-S, Kim M-J, Heo J-I, Kim J-H, Kho Y-J, Kim SC, Kim J, Park J-B, Lee J-Y: Higher DNA repair activity is related with longer replicative life span in mammalian embryonic fibroblast cells. Biogerontology. 2011, 12: 565-579. 10.1007/s10522-011-9355-2.
Finkel T: Signal transduction by reactive oxygen species. J Cell Biol. 2011, 194: 7-15. 10.1083/jcb.201102095.
Winterbourn CC: The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013, 528: 3-25.
Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP: Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 2013, 19: 753-759. 10.1038/nm.3212.
Cocheme HM, Murphy MP: Can antioxidants be effective therapeutics?. Curr Opin Investig Drugs. 2010, 11: 426-431.
Rhee SG: Cell signaling: H2O2, a necessary evil for cell signaling. Science. 2006, 312: 1882-1883. 10.1126/science.1130481.
Ruiz-Gines JA, Lopez-Ongil S, Gonzalez-Rubio M, Gonzlez-Santiago L, Rodriguez-Puyol M, Rodriguez-Puyol D: Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J Cardiovasc Pharmacol. 2000, 35: 109-113. 10.1097/00005344-200001000-00014.
Faucher K, Rabinovitch-Chable H, Barriere G, Cook-Moreau J, Rigaud M: Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie. 2003, 85: 611-617. 10.1016/S0300-9084(03)00089-0.
Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W: Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011, 11: 191-203. 10.1186/1471-2407-11-191.
Sarsour EH, Venkataraman S, Kalen AL, Oberley LW, Goswami PC: Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell. 2008, 7: 405-417. 10.1111/j.1474-9726.2008.00384.x.
Ough M, Lewis A, Zhang Y, Hinkhouse MM, Ritchie JM, Oberley LW, Cullen JJ: Inhibition of cell growth by overexpression of manganese superoxide dismutase (MnSOD) in human pancreatic carcinoma. Free Radic Res. 2004, 38: 1223-1233. 10.1080/10715760400017376.
Venkataraman S, Jiang X, Weydert C, Zhang Y, Zhang HJ, Goswami PC, Ritchie JM, Oberley LW, Buettner GR: Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene. 2005, 24: 77-89. 10.1038/sj.onc.1208145.
Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Spitz DR, Oberley LW: Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med. 2006, 41: 226-237. 10.1016/j.freeradbiomed.2006.03.015.
Li S, Yan T, Yang JQ, Oberley TD, Oberley LW: The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 2000, 60: 3927-3939.
Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA: The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010, 7: 380-390. 10.1016/j.stem.2010.07.011.
Owusu-Ansah E, Yavari A, Mandal S, Banerjee U: Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet. 2008, 40: 356-361. 10.1038/ng.2007.50.
Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T: Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006, 12: 446-451. 10.1038/nm1388.
Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M: Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010, 28: 661-673. 10.1002/stem.307.
Chiu J, Dawes IW: Redox control of cell proliferation. Trends Cell Biol. 2012, 22: 592-601. 10.1016/j.tcb.2012.08.002.
Maryanovich M, Gross A: A ROS rheostat for cell fate regulation. Trends Cell Biol. 2013, 23: 129-134. 10.1016/j.tcb.2012.09.007.