A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson’s disease

BMC Medical Genomics - Tập 11 - Trang 1-22 - 2018
Lining Su1, Chunjie Wang2, Chenqing Zheng3, Huiping Wei1, Xiaoqing Song1
1Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, China
2Department of Basic Medicine, Zhangjiakou University, Zhangjiakou, China
3Shenzhen RealOmics (Biotech) Co., Ltd, Shenzhen, China

Tóm tắt

Parkinson’s disease (PD) is a long-term degenerative disease that is caused by environmental and genetic factors. The networks of genes and their regulators that control the progression and development of PD require further elucidation. We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra (SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI. Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network. Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the 3′-untranslated region of genes and are controlled by several miRNAs. Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.

Tài liệu tham khảo

Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76. https://doi.org/10.1136/jnnp.2007.131045. Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86:109–27. https://doi.org/10.1093/bmb/ldn013. Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2014;54:141–64. https://doi.org/10.1146/annurev-pharmtox-011613-135937. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004;363(9423):1783–93. Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18(R1):R48–59. https://doi.org/10.1093/hmg/ddp012. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3. Dhungel N, Eleuteri S, Li LB, Kramer NJ, Chartron JW, Spencer B, Kosberg K, Fields JA, Stafa K, Adame A, et al. Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on alpha-synuclein. Neuron. 2015;85(1):76–87. https://doi.org/10.1016/j.neuron.2014.11.027. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51(3):296–301. Fu R, Cui SS, Du JJ, He YC, Gao C, Huang P, Qian YW, Luo XG, Chen SD. Fatigue correlates with LRRK2 G2385R variant in Chinese Parkinson’s disease patients. Parkinsonism Relat Disord. 2017;44:101–5. https://doi.org/10.1016/j.parkreldis.2017.09.016. Berge-Seidl V, Pihlstrom L, Maple-Grodem J, Forsgren L, Linder J, Larsen JP, Tysnes OB, Toft M. The GBA variant E326K is associated with Parkinson’s disease and explains a genomewide association signal. Neurosci Lett. 2017;658:48–52. https://doi.org/10.1016/j.neulet.2017.08.040. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, et al. Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson’s disease. PLoS One. 2011;6(10):e25443. https://doi.org/10.1371/journal.pone.0025443. Chahine LM, Stern MB, Chen-Plotkin A. Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(Suppl 1):S99–103. https://doi.org/10.1016/S1353-8020(13)70025-7. Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics. 2017;18(1):721. https://doi.org/10.1186/s12864-017-4098-3. Mariani E, Frabetti F, Tarozzi A, Pelleri MC, Pizzetti F, Casadei R. Meta-Analysis of Parkinson’s disease transcriptome data using TRAM software: Whole substantia nigra tissue and single dopamine neuron differential gene expression. PLoS One. 2016;11(9):e0161567. https://doi.org/10.1371/journal.pone.0161567. Chang D, Nalls MA, Hallgrimsdottir IB, Hunkapiller J, van der Brug M, Cai F, Kerchner GA, Ayalon G, Bingol B, Sheng M, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet. 2017;49(10):1511–6. https://doi.org/10.1038/ng.3955. Wang Q, Li WX, Dai SX, Guo YC, Han FF, Zheng JJ, Li GH, Huang JF. Meta-Analysis of Parkinson’s disease and Alzheimer’s disease revealed commonly impaired pathways and dysregulation of NRF2-dependent genes. J Alzheimers Dis. 2017;56(4):1525–39. https://doi.org/10.3233/JAD-161032. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22(22):2825–7. Das S, Ghosal S, Sen R, Chakrabarti J. lnCeDB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS One. 2014;9(6):e98965. https://doi.org/10.1371/journal.pone.0098965. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7. Dweep H, Gretz N, Sticht C. miRWalk database for miRNA-target interactions. Methods Mol Biol. 2014;1182:289–305. https://doi.org/10.1007/978-1-4939-1062-5_25. Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 2008;5(9):e184. https://doi.org/10.1371/journal.pmed.0050184. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303. https://doi.org/10.1007/978-1-60761-987-1_18. Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG. DIANA-TarBase and DIANA Suite Tools: Studying Experimentally Supported microRNA Targets. Curr Protoc Bioinformatics. 2016;55:12.14.1–18. https://doi.org/10.1002/cpbi.12. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM, Hatzigeorgiou AG. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 2013;41(Database issue):D239–45. https://doi.org/10.1093/nar/gks1246. Fogel GB, Weekes DG, Varga G, Dow ER, Craven AM, Harlow HB, Su EW, Onyia JE, Su C. A statistical analysis of the TRANSFAC database. Biosystems. 2005;81(2):137–54. Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res. 2010;38(Database issue):D119–22. https://doi.org/10.1093/nar/gkp803. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes. BMC Genomics. 2012;13:44. https://doi.org/10.1186/1471-2164-13-44. Shi Y, Yang F, Wei S, Xu G. Identification of key genes affecting results of hyperthermia in osteosarcoma based on integrative ChIP-Seq/TargetScan analysis. Med Sci Monit. 2017;23:2042–8. Yousef GM. miRSNP-based approach identifies a miRNA that regulates prostate-specific antigen in an allele-specific manner. Cancer Discov. 2015;5(4):351–2. https://doi.org/10.1158/2159-8290 CD-15-0230. Ning S, Zhao Z, Ye J, Wang P, Zhi H, Li R, Wang T, Li X. LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs. BMC Bioinform. 2014;15:152. https://doi.org/10.1186/1471-2105-15-152. Hsu CH, Chan D, Greggio E, Saha S, Guillily MD, Ferree A, Raghavan K, Shen GC, Segal L, Ryu H, et al. MKK6 binds and regulates expression of Parkinson’s disease-related protein LRRK2. J Neurochem. 2010;112(6):1593–604. https://doi.org/10.1111/j.1471-4159.2010.06568.x. Vivarelli S, Lenzken SC, Ruepp MD, Ranzini F, Maffioletti A, Alvarez R, Muhlemann O, Barabino SM. Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2. PLoS One. 2013;8(4):e61980. https://doi.org/10.1371/journal.pone.0061980. Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA. Neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: a pivotal role for modulating NF-kappaB and STAT3 signaling. Mol Neurobiol. 2017;54(3):1906–18. https://doi.org/10.1007/s12035-016-9762-0. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, Goldmann J, Myers RH, Young RA, Jaenisch R. Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature. 2016;533(7601):95–9. https://doi.org/10.1038/nature17939. Banerjee D, Nandagopal K. Potential interaction between the GARS-AIRS-GART Gene and CP2/LBP-1c/LSF transcription factor in down syndrome-related Alzheimer disease. Cell Mol Neurobiol. 2007;27(8):1117–26. Potashkin JA, Santiago JA, Ravina BM, Watts A, Leontovich AA. Biosignatures for Parkinson’s disease and atypical parkinsonian disorders patients. PLoS One. 2012;7(8):e43595. https://doi.org/10.1371/journal.pone.0043595. Yi F, Pereira L, Hoffman JA, Shy BR, Yuen CM, Liu DR, Merrill BJ. Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol. 2011;13(7):762–70. https://doi.org/10.1038/ncb2283. Atlasi Y, Noori R, Gaspar C, Franken P, Sacchetti A, Rafati H, Mahmoudi T, Decraene C, Calin GA, Merrill BJ, et al. Wnt signaling regulates the lineage differentiation potential of mouse embryonic stem cells through Tcf3 down-regulation. PLoS Genet. 2013;9(5):e1003424. https://doi.org/10.1371/journal.pgen.1003424. Zaghlool A, Halvardson J, Zhao JJ, Etemadikhah M, Kalushkova A, Konska K, Jernberg-Wiklund H, Thuresson AC, Feuk L. A Role for the Chromatin-remodeling factor BAZ1A in neurodevelopment. Hum Mutat. 2016;37(9):964–75. https://doi.org/10.1002/humu.23034. Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, Geschwind DH, Mane SM, State MW, Sestan N. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009;62(4):494–509. https://doi.org/10.1016/j.neuron. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. https://doi.org/10.1126/science.1260419. Di Gregorio E, Bianchi FT, Schiavi A, Chiotto AM, Rolando M, Verdun di Cantogno L, Grosso E, Cavalieri S, Calcia A, Lacerenza D, et al. A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J Med Genet. 2013;50(8):543–51. https://doi.org/10.1136/jmedgenet-2013-101542. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006;24(10):1285–92. Viphakone N, Cumberbatch MG, Livingstone MJ, Heath PR, Dickman MJ, Catto JW, Wilson SA. Luzp4 defines a new mRNA export pathway in cancer cells. Nucleic Acids Res. 2015;43(4):2353–66. https://doi.org/10.1093/nar/gkv070. Fujinami K, Uemura H, Ishiguro H, Kubota Y. Liprin-alpha2 gene, protein tyrosine phosphatase LAR interacting protein related gene, is downregulated by androgens in the human prostate cancer cell line LNCaP. Int J Mol Med. 2002;10(2):173–6. Bentin Toaldo C, Alexi X, Beelen K, Kok M, Hauptmann M, Jansen M, Berns E, Neefjes J, Linn S, Michalides R, et al. Protein Kinase A-induced tamoxifen resistance is mediated by anchoring protein AKAP13. BMC Cancer. 2015;15:588. https://doi.org/10.1186/s12885-015-1591-4. Virok DP, Simon D, Bozso Z, Rajko R, Datki Z, Balint E, Szegedi V, Janaky T, Penke B, Fulop L. Protein array based interactome analysis of amyloid-beta indicates an inhibition of protein translation. J Proteome Res. 2011;10(4):1538–47. https://doi.org/10.1021/pr1009096. Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J, Lund EK, Galjart N, Thomas P, Wileman T, Mogensen MM. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol. 2017;7(2) https://doi.org/10.1098/rsob.160274. Schubert KO, Focking M, Prehn JH, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry. 2012;17(7):669–81. https://doi.org/10.1038/mp.2011.123. Bruggemann M, Gromes A, Poss M, Schmidt D, Klumper N, Tolkach Y, Dietrich D, Kristiansen G, Muller SC, Ellinger J. Systematic analysis of the expression of the mitochondrial ATP Synthase (Complex V) subunits in clear cell renal cell carcinoma. Transl Oncol. 2017;10(4):661–8. https://doi.org/10.1016/j.tranon.2017.06.002. Larsen SB, Hanss Z, Kruger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 2018; https://doi.org/10.1007/s00441-017-2768-8. Alieva A, Filatova EV, Karabanov AV, Illarioshkin SN, Limborska SA, Shadrina MI, Slominsky PA. miRNA expression is highly sensitive to a drug therapy in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(1):72–4. https://doi.org/10.1016/j.parkreldis.2014.10.018. Wang Z, Guo D, Yang B, Wang J, Wang R, Wang X, Zhang Q. Integrated analysis of microarray data of atherosclerotic plaques: modulation of the ubiquitin-proteasome system. PLoS One. 2014;9(10):e110288. https://doi.org/10.1371/journal.pone.0110288. Chen H, Mosley TH, Alonso A, Huang X. Plasma urate and Parkinson’s disease in the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2009;169(9):1064–9. https://doi.org/10.1093/aje/kwp033. Li Q, Yang Z, Lu B, Wen J, Ye Z, Chen L, He M, Tao X, Zhang W, Huang Y, et al. Serum uric acid level and its association with metabolic syndrome and carotid atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2011;10:72. https://doi.org/10.1186/1475-2840-10-72. Chatterjee P, Roy D. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun. 2017;484(3):557–64. https://doi.org/10.1016/j.bbrc.2017.01.121. Chow AM, Mok P, Xiao D, Khalouei S, Brown IR. Heteromeric complexes of heat shock protein 70 (HSP70) family members, including Hsp70B', in differentiated human neuronal cells. Cell Stress Chaperones. 2010;15(5):545–53. https://doi.org/10.1007/s12192-009-0167-0. Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem. 2014;131(6):743–54. https://doi.org/10.1111/jnc.12970. Doci CL, Mankame TP, Langerman A, Ostler KR, Kanteti R, Best T, Onel K, Godley LA, Salgia R, Lingen MW. Characterization of NOL7 gene point mutations, promoter methylation, and protein expression in cervical cancer. Int J Gynecol Pathol. 2012;31(1):15–24. https://doi.org/10.1097/PGP.0b013e318220ba16. Chen ZC, Zhang W, Chua LL, Chai C, Li R, Lin L, Cao Z, Angeles DC, Stanton LW, Peng JH, et al. Phosphorylation of amyloid precursor protein by mutant LRRK2 promotes AICD activity and neurotoxicity in Parkinson’s disease. Sci Signal. 2017;10(488) https://doi.org/10.1126/scisignal.aam6790. Myhre R, Toft M, Kachergus J, Hulihan MM, Aasly JO, Klungland H, Farrer MJ. Multiple alpha-synuclein gene polymorphisms are associated with Parkinson’s disease in a Norwegian population. Acta Neurol Scand. 2008;118(5):320–7. https://doi.org/10.1111/j.1600-0404.2008.01019.x. Kettunen E, Anttila S, Seppanen JK, Karjalainen A, Edgren H, Lindstrom I, Salovaara R, Nissen AM, Salo J, Mattson K, et al. Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer. Cancer Genet Cytogenet. 2004;149(2):98–106. https://doi.org/10.1016/S0165-4608(03)00300-5. Klein F, Feldhahn N, Mooster JL, Sprangers M, Hofmann WK, Wernet P, Wartenberg M, Muschen M. Tracing the pre-B to immature B cell transition in human leukemia cells reveals a coordinated sequence of primary and secondary IGK gene rearrangement, IGK deletion, and IGL gene rearrangement. J Immunol. 2005;174(1):367–75. Watson RP, Tekki-Kessaris N, Boulter CA. Characterisation, chromosomal localisation and expression of the mouse Kid3 gene. Biochim Biophys Acta. 2000;1490(1-2):153–8. Satoh J, Asahina N, Kitano S, Kino Y. A Comprehensive Profile of ChIP-Seq-Based PU.1/Spi1 Target Genes in Microglia. Gene Regul Syst Bio. 2014;8:127–39. https://doi.org/10.4137/GRSB.S19711. Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, Harari O, Bertelsen S, Fairfax BP, Czajkowski J, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci. 2017;20(8):1052–61. https://doi.org/10.1038/nn.4587. Marques TM, Kuiperij HB, Bruinsma IB, van Rumund A, Aerts MB, Esselink RAJ, Bloem BR, Verbeek MM. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol. 2017;54(10):7736–45. https://doi.org/10.1007/s12035-016-0253-0. Botta-Orfila T, Morato X, Compta Y, Lozano JJ, Falgas N, Valldeoriola F, Pont-Sunyer C, Vilas D, Mengual L, Fernandez M, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res. 2014;92(8):1071–7. https://doi.org/10.1002/jnr.23377. Delay C, Calon F, Mathews P, Hebert SS. Alzheimer-specific variants in the 3’UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 2011;6:70. https://doi.org/10.1186/1750-1326-6-70. Chang SJ, Weng SL, Hsieh JY, Wang TY, Chang MD, Wang HW. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genet. 2011;4:65. https://doi.org/10.1186/1755-8794-4-65. Zhou B, Zhao H, Yu J, Guo C, Dou X, Song F, Hu G, Cao Z, Qu Y, Yang Y, et al. EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res. 2018;46(D1):D100–D5. https://doi.org/10.1093/nar/gkx677. Nishimoto Y, Nakagawa S, Hirose T, Okano HJ, Takao M, Shibata S, Suyama S, Kuwako K, Imai T, Murayama S, et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain. 2013;6:31. https://doi.org/10.1186/1756-6606-6-31. Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet. 2012;3:326. https://doi.org/10.3389/fgene.2012.00326. Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis. 2012;46(2):245–54. https://doi.org/10.1016/j.nbd.2011.12.006. Toffoli M, Dreussi E, Cecchin E, Valente M, Sanvilli N, Montico M, Gagno S, Garziera M, Polano M, Savarese M, et al. SNCA 3’UTR genetic variants in patients with Parkinson’s disease and REM sleep behavior disorder. Neurol Sci. 2017;38(7):1233–40. https://doi.org/10.1007/s10072-017-2945-2. Sotiriou S, Gibney G, Baxevanis AD, Nussbaum RL. A single nucleotide polymorphism in the 3’UTR of the SNCA gene encoding alpha-synuclein is a new potential susceptibility locus for Parkinson disease. Neurosci Lett. 2009;461(2):196–201. https://doi.org/10.1016/j.neulet.2009.06.034. Ben Fredj N, Rizzo R, Bortolotti D, Nefzi F, Chebel S, Rotola A, Frih-Ayed M, Di Luca D, Aouni M. Evaluation of the implication of KIR2DL2 receptor in multiple sclerosis and herpesvirus susceptibility. J Neuroimmunol. 2014;271(1-2):30–5. https://doi.org/10.1016/j.jneuroim.2014.03.017. Ban JJ, Chung JY, Lee M, Im W, Kim M. MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun. 2017;488(2):316–21. https://doi.org/10.1016/j.bbrc.2017.05.040. Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R, Wallin A, Bjerke M, Zetterberg H, Blennow K, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013;81(24):2103–6. https://doi.org/10.1212/01.wnl.0000437306.37850.22. Yan H, Li Q, Wu J, Hu W, Jiang J, Shi L, Yang X, Zhu D, Ji M, Wu C. MiR-629 promotes human pancreatic cancer progression by targeting FOXO3. Cell Death Dis. 2017;8(10):e3154. https://doi.org/10.1038/cddis.2017.525. Jiang J, Zhang Y, Guo Y, Yu C, Chen M, Li Z, Tian S, Sun C. MicroRNA-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation. Oncotarget. 2015;6(8):6359–72. https://doi.org/10.18632/oncotarget.3438. Sibley CR, Seow Y, Curtis H, Weinberg MS, Wood MJ. Silencing of Parkinson’s disease-associated genes with artificial mirtron mimics of miR-1224. Nucleic Acids Res. 2012;40(19):9863–75. https://doi.org/10.1093/nar/gks712. Wei P, Li L, Zhang Z, Zhang W, Liu M, Sheng X. A genetic variant of miR-335 binding site in the ERBB4 3’-UTR is associated with prognosis of ovary cancer. J Cell Biochem. 2017; https://doi.org/10.1002/jcb.26488. Pehserl AM, Ress AL, Stanzer S, Resel M, Karbiener M, Stadelmeyer E, Stiegelbauer V, Gerger A, Mayr C, Scheideler M, et al. Comprehensive analysis of miRNome alterations in response to sorafenib treatment in colorectal cancer cells. Int J Mol Sci. 2016;17(12):2011. https://doi.org/10.3390/ijms17122011. Zheng G, Wang H, Zhang X, Yang Y, Wang L, Du L, Li W, Li J, Qu A, Liu Y, et al. Identification and validation of reference genes for qPCR detection of serum microRNAs in colorectal adenocarcinoma patients. PLoS One. 2013;8(12):e83025. https://doi.org/10.1371/journal.pone.0083025. Xu CZ, Xie J, Jin B, Chen XW, Sun ZF, Wang BX, Dong P. Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line. Int J Clin Exp Pathol. 2013;6(7):1351–61. De-Ugarte L, Caro-Molina E, Rodriguez-Sanz M, Garcia-Perez MA, Olmos JM, Sosa-Henriquez M, Perez-Cano R, Gomez-Alonso C, Del Rio L, Mateo-Agudo J, et al. SNPs in bone-related miRNAs are associated with the osteoporotic phenotype. Sci Rep. 2017;7(1):516. https://doi.org/10.1038/s41598-017-00641-7. Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, Usenovic M, Wong YC, Maver A, Poths S, Safer H, et al. Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology. 2017;89(16):1676–83. https://doi.org/10.1212/WNL.0000000000004516. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA, Vance JM, et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci U S A. 2007;104(3):955–60. https://doi.org/10.1073/pnas.0610204104. Calligaris R, Banica M, Roncaglia P, Robotti E, Finaurini S, Vlachouli C, Antonutti L, Iorio F, Carissimo A, Cattaruzza T, et al. Blood transcriptomics of drug-naive sporadic Parkinson’s disease patients. BMC Genomics. 2015;16:876. https://doi.org/10.1186/s12864-015-2058-3. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 2007;3(6):e98. https://doi.org/10.1371/journal.pgen.0030098. Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB. Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics. 2006;7(1):1–11. https://doi.org/10.1007/s10048-005-0020-2. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010;2(52):52ra73. https://doi.org/10.1126/scitranslmed.3001059.