A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT

American Journal of Physiology - Renal Physiology - Tập 289 Số 4 - Trang F699-F720 - 2005
Alan M. Weinstein1
1Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA. [email protected]

Tóm tắt

A model of rat early distal convoluted tubule (DCT) is developed in conjunction with a kinetic representation of the thiazide-sensitive NaCl cotransporter (TSC). Realistic constraints on cell membrane electrical conductance require that most of the peritubular Clreabsorption proceeds via a KCl cotransporter,along with most of the K+recycled from the Na-K-ATPase. The model tubule reproduces the saturable Clreabsorption of DCT but not the micropuncture finding of linear Na+flux in response to load, more likely a feature of late DCT (CNT). As in proximal tubule, early DCT HCO3reabsorption is mediated by a luminal Na+/H+exchanger (NHE), but in contrast to proximal tubule, the DCT exchanger is operating closer to equilibrium. In the model DCT, two consequences of the lesser driving force for NHE exchange are an acidic cytosol and wider swings in NHE flux with perturbations of luminal composition. Variations in luminal NaCl provide a challenge to cell volume, which can be blunted by volume dependence of the KCl cotransporter. Cell swelling can also be induced by increases in peritubular K+concentration. In this case, volume-dependent inhibition of TSC could provide volume homeostasis that also enhances distal Na+delivery, and ultimately enhances renal K+excretion. In the model DCT, proton secretion is blunted by peritubular HCO3, so that there is little contribution by this segment to the maintenance of metabolic alkalosis. During alkalosis, the model predicts that increasing luminal NaCl concentration enhances NHE flux, so that these calculations provide no support for a role of early DCT in recovery from Cldepletion alkalosis.

Từ khóa


Tài liệu tham khảo

10.1152/ajprenal.1997.273.4.F601

10.1152/ajprenal.1996.271.5.F977

10.1152/ajprenal.1992.263.5.F833

Biner HL, Arpin-Bott M, Loffing J, Wang X, Knepper M, Hebert SC, and Kaissling B.Human cortical distal nephron: distribution of electrolyte and water transport pathways.J Am Soc Nephrol13: 836–847, 2002.

10.1172/JCI112748

10.1152/ajprenal.1998.275.3.F379

10.1152/ajprenal.1999.276.6.F931

10.1152/ajprenal.1999.276.6.F952

10.1152/ajprenal.2001.281.2.F222

10.1152/ajprenal.1984.246.6.F937

10.1152/ajprenal.1978.235.5.F492

DeBermudez Land Windhager EE.Osmotically induced changes in electrical resistance of distal tubules of rat kidney.Am J Physiol229: 1536–1546, 1975.

10.1152/ajprenal.1990.259.2.F357

Duarte CG, Chomety F, and Giebisch G.Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat.Am J Physiol221: 632–639, 1971.

10.1152/ajprenal.1991.260.4.F608

10.1152/ajprenal.1981.240.2.F138

10.1007/BF00583877

10.1152/ajprenal.1985.248.5.F638

10.1152/ajprenal.1987.253.3.F546

10.1172/JCI113847

10.1152/ajprenal.1994.266.2.F218

10.1038/ki.1984.46

Fromter E.Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules?J Physiol288: 1–31, 1979.

10.1073/pnas.90.7.2749

10.1113/jphysiol.1973.sp010234

Gennari FJ, Ponte ML, and Cortell S.Distal tubular chloride delivery and reabsorption after hydrochloric acid administration in the rat.Miner Elec Metab3: 217–222, 1980.

10.1113/jphysiol.1977.sp011827

10.1152/ajprenal.1979.236.2.F192

10.1152/ajprenal.1983.245.5.F593

10.1007/BF00586991

10.1152/ajprenal.1983.245.5.F584

Khuri RN, Wiederholt M, Strieder N, and Giebisch G.Effects of flow rate and potassium intake on distal tubular potassium transfer.Am J Physiol228: 1249–1261, 1975.

Khuri RN, Wiederholt M, Strieder N, and Giebisch G.Effects of graded solute diuresis on renal tubular sodium transport in the rat.Am J Physiol228: 1262–1268, 1975.

10.1152/ajprenal.1986.250.3.F497

Lassiter WE, Gottschalk CW, and Mylle M.Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney.Am J Physiol200: 1139–1146, 1961.

10.1172/JCI111735

10.1172/JCI114637

10.1152/ajpcell.1998.275.6.C1432

10.1152/ajprenal.00217.2002

10.1038/ki.1980.20

10.1152/ajprenal.1982.243.4.F335

Malnic G, de Mello Aires M, andGiebischG. Potassium transport across renal distal tubules during acid-base disturbances.Am J Physiol221: 1192–1208, 1971.

Malnic G, de Mello Aires M, and Giebisch G.Micropuncture study of renal tubular hydrogen ion transport in the rat.Am J Physiol222: 147–158, 1972.

Malnic Gand Giebisch G.Some electrical properties of distal tubular epithelium in the rat.Am J Physiol223: 797–808, 1972.

Malnic G, Klose RM, and Giebisch G.Micropuncture study of renal potassium excretion in the rat.Am J Physiol206: 674–686, 1964.

Malnic G, Klose RM, and Giebisch G.Micropuncture study of distal tubular potassium and sodium transport in rat nephron.Am J Physiol211: 529–547, 1966.

Malnic G, Mello Aires M, and Vieira FL.Chloride excretion in the nephrons of rat kidney during alterations of acid-base equilibrium.Am J Physiol218: 20–26, 1970.

10.1074/jbc.M003112200

10.1152/ajprenal.2000.279.1.F161

Pfaller W.Structure function correlation on rat kidney. New York: Springer-Verlag, 1982, p.1–106.

10.1038/ki.1996.300

10.1172/JCI105142

10.1152/physrev.2000.80.1.277

10.1007/BF00584753

10.1172/JCI112754

10.1152/ajprenal.1982.242.5.F544

10.1152/ajprenal.1982.243.5.F487

Stein JH, Osgood RW, Boonjarern S, Cox JW, and Ferris TF.Segmental sodium reabsorption in rats with mild and severe volume depletion.Am J Physiol227: 351–359, 1974.

10.1152/ajprenal.1990.258.4.F908

10.1152/ajplung.00130.2000

10.1152/ajprenal.1987.253.3.F555

10.1152/ajprenal.1984.247.6.F904

Velazquez Hand Greger R.Influences on basolateral K conductance of cells of early distal convoluted tubule (Abstract).Kidney Int29: 409, 1986.

10.1152/ajprenal.00389.2002

10.1152/ajprenal.1986.250.6.F1013

10.1152/ajprenal.1982.242.1.F46

10.1152/ajprenal.1994.267.4.F660

10.1152/ajprenal.1996.271.1.F143

10.1152/ajprenal.2001.281.6.F1117

10.1172/JCI116519

10.1152/ajprenal.1992.263.5.F784

10.1152/ajprenal.1994.267.2.F237

10.1085/jgp.105.5.617

10.1152/ajprenal.1998.274.5.F841

10.1006/bulm.1999.0127

10.1152/ajprenal.2000.279.1.F24

10.1152/ajprenal.00044.2005

10.1172/JCI114321

10.1152/ajprenal.1990.259.4.F636

10.1152/ajprenal.1984.247.3.F506

10.1007/BF00585057