A matched filter for chaos

Chaos - Tập 20 Số 2 - 2010
Ned J. Corron1, Jonathan N. Blakely1, Mark T. Stahl1
1U. S. Army Research, Development and Engineering Command , RDMR-WSS, Redstone Arsenal, Alabama 35898, USA

Tóm tắt

A novel chaotic oscillator is shown to admit an exact analytic solution and a simple matched filter. The oscillator is a hybrid dynamical system including both a differential equation and a discrete switching condition. The analytic solution is written as a linear convolution of a symbol sequence and a fixed basis function, similar to that of conventional communication waveforms. Waveform returns at switching times are shown to be conjugate to a chaotic shift map, effectively proving the existence of chaos in the system. A matched filter in the form of a delay differential equation is derived for the basis function. Applying the matched filter to a received waveform, the bit error rate for detecting symbols is derived, and explicit closed-form expressions are presented for special cases. The oscillator and matched filter are realized in a low-frequency electronic circuit. Remarkable agreement between the analytic solution and the measured chaotic waveform is observed.

Từ khóa


Tài liệu tham khảo

1993, Phys. Rev. Lett., 70, 3031, 10.1103/PhysRevLett.70.3031

2003, Int. J. Bifurcation Chaos Appl. Sci. Eng., 13, 269, 10.1142/S0218127403006546

1996, IEEE MTT-S Int. Microwave Symp. Dig., 3, 1879

1994, Phys. Rev. Lett., 73, 1781, 10.1103/PhysRevLett.73.1781

1997, Phys. Rev. Lett., 78, 1247, 10.1103/PhysRevLett.78.1247

1997, Phys. Rev. Lett., 79, 3787, 10.1103/PhysRevLett.79.3787

1998, Phys. Rev. E, 58, 8005, 10.1103/PhysRevE.58.8005

1998, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 45, 1129, 10.1109/81.735435

1994, Phys. Rev. E, 50, 4488, 10.1103/PhysRevE.50.4488

2000, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 47, 1663, 10.1109/81.899918

2003, Chaos, 13, 195, 10.1063/1.1499256

2005, Introduction to Digital Communications

1985, Physica A, 130, 597, 10.1016/0378-4371(85)90048-2

1997, Phys. Rev. E, 55, 5280, 10.1103/PhysRevE.55.5280

2007, IEEE Trans. Signal Process., 55, 1379, 10.1109/TSP.2006.888885

2005, J. Phys.: Conf. Ser., 23, 215, 10.1088/1742-6596/23/1/024

2005, Chaos, 15, 033102, 10.1063/1.1944467

2006, Phys. Rev. Lett., 97, 024101, 10.1103/PhysRevLett.97.024101

2007, Phys. Rev. E, 75, 045201, 10.1103/PhysRevE.75.045201

2008, Phys. Rev. E, 77, 037201, 10.1103/PhysRevE.77.037201

2009, Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal., 16, 777

1984, J. Math. Anal. Appl., 99, 265, 10.1016/0022-247X(84)90248-8

1992, Stability and Oscillations in Delay Differential Equations of Population Dynamics

2007, Nonlinear Anal., 66, 367, 10.1016/j.na.2005.11.032

1984, 856

1985, 847

1986, Circuits Syst. Signal Process., 5, 321, 10.1007/BF01600066

1995, Philos. Trans. R. Soc. London, Ser. A, 353, 47, 10.1098/rsta.1995.0089

1996, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 43, 1019, 10.1109/81.545846

2000, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 47, 1692, 10.1109/81.899921