A learning analytics dashboard for data-driven recommendations on influences of non-cognitive factors in introductory programming

Amanpreet Kaur1, Kuljit Kaur Chahal1
1Department of Computer Science, Guru Nanak Dev University, Amritsar, Punjab, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Afzaal, M., Nouri, J., Zia, A., Papapetrou, P., Fors, U., Wu, Y., ... & Weegar, R. (2021). Explainable AI for data-driven feedback and intelligent action recommendations to support students self-regulation. Frontiers in Artificial Intelligence, 4, 723447

Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015). Exploring machine learning methods to automatically identify students in need of assistance. In Proceedings of the eleventh annual international conference on international computing education research (pp. 121–130). ACM.

Aljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M., & Aslam, M. A. (2019). An integrated framework for course adapted student learning analytics dashboard. Computers in Human Behavior, 92, 679–690.

Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 267–270). ACM.

Baker, R. S. (2016). Stupid tutoring systems, intelligent humans. International Journal of Artificial Intelligence in Education, 26, 600–614.

Bodily, R., & Verbert, K. (2017). Review of research on student-facing learning analytics dashboards and educational recommender systems. IEEE Transactions on Learning Technologies, 10(4), 405–418.

Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4–7.

Capuano, N., Mangione, G. R., Pierri, A., & Salerno, S. (2012). Learning goals recommendation for self regulated learning. Future, 28(6), 1373–1379.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

Clow, D. (2012). The learning analytics cycle: closing the loop effectively. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 134–138).

Costa, P. T., Jr., & McCrae, R. R. (2008). The Revised NEO Personality Inventory (NEO-PI-R). In G. J. Boyle, G. Matthews, & D. H. Saklofske (Eds.), The SAGE handbook of personality theory and assessment, Vol. 2. Personality measurement and testing (pp. 179–198). Sage Publications, Inc.

Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247–256.

Evans, G. E., & Simkin, M. G. (1989). What best predicts computer proficiency? Communications of the ACM, 32(11), 1322–1327.

Fahd, K., Venkatraman, S., Miah, S. J., & Ahmed, K. (2022). Application of machine learning in higher education to assess student academic performance, at-risk, and attrition: A meta-analysis of literature. Education and Information Technologies, 27, 3743–3775.

Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5–6), 304–317.

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc.

Govaerts, S., Verbert, K., Duval, E., & Pardo, A. (2012). The student activity meter for awareness and self-reflection. In CHI'12 Extended Abstracts on Human Factors in Computing Systems (pp. 869-884). ACM.

Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Journal of Educational Technology & Society, 15(3), 42–57.

Gutiérrez, F., Seipp, K., Ochoa, X., Chiluiza, K., De Laet, T., & Verbert, K. (2020). LADA: A learning analytics dashboard for academic advising. Computers in Human Behavior, 107, 105826.

Han, J., Kim, K. H., Rhee, W., & Cho, Y. H. (2021). Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation. Computers & Education, 163, 104041.

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair programming in CS1. In Proceedings of the 9th annual SIGCSE conference on Innovation and technology in computer science education (pp. 176–180). ACM.

Hellings, J., & Haelermans, C. (2020). The effect of providing learning analytics on student behaviour and performance in programming: a randomised controlled experiment. Higher Education, 1–18.

Hilliger, I., Miranda, C., Schuit, G., Duarte, F., Anselmo, M., & Parra, D. (2021). Evaluating a learning analytics dashboard to visualize student self-reports of time-on-task: a case study in a Latin American University. In LAK21: 11th International Learning Analytics and Knowledge Conference (pp. 592–598). ACM.

Hsu, W. C., & Plunkett, S. W. (2016). Attendance and grades in learning programming classes. In Proceedings of the Australasian Computer Science Week Multiconference (pp. 1–6). ACM.

Hui, B., & Farvolden, S. (2017). How can learning analytics improve a course?. In Proceedings of the 22nd Western Canadian Conference on Computing Education (pp. 1–6). ACM.

Iepsen, E. F., Bercht, M., & Reategui, E. (2013). Detection and assistance to students who show frustration in learning of algorithms. In 2013 IEEE Frontiers in Education Conference (FIE) (pp. 1183–1189). IEEE.

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., ... & Toll, D. (2015). Educational data mining and learning analytics in programming: Literature review and case studies. Proceedings of the 2015 ITiCSE on Working Group Reports, 41–63. ACM.

Ishizue, R., Sakamoto, K., Washizaki, H., & Fukazawa, Y. (2018). Student placement and skill ranking predictors for programming classes using class attitude, psychological scales, and code metrics. Research and Practice in Technology Enhanced Learning, 13, 1–20.

Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate: Preparing learning analytics dashboards for educational practice. In Proceedings of the 8th international conference on learning analytics and knowledge (pp. 31–40). ACM.

Kanaparan, G., Cullen, R., & Mason, D. D. (2013). Self-Efficacy and Engagement as Predictors of Student Programming Performance. In Proceedings of Pacific Asia Conference on Information Systems (PACIS) (p. 282). Association for Information Systems.

Kemp, P. E., Wong, B., & Berry, M. G. (2019). Female performance and participation in computer science: A national picture. ACM Transactions on Computing Education (TOCE), 20(1), 1–28.

Khan, I., & Pardo, A. (2016). Data2U: Scalable real time student feedback in active learning environments. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 249–253). ACM.

Khosravi, H., & Cooper, K. M. (2017). Using learning analytics to investigate patterns of performance and engagement in large classes. In Proceedings of the 2017 acm sigcse technical symposium on computer science education (pp. 309–314). ACM.

Kim, J., Jo, I. H., & Park, Y. (2016). Effects of learning analytics dashboard: Analyzing the relations among dashboard utilization, satisfaction, and learning achievement. Asia Pacific Education Review, 17, 13–24.

Kinnunen, P., & Simon, B. (2011). CS majors' self-efficacy perceptions in CS1: results in light of social cognitive theory. In Proceedings of the seventh international workshop on Computing education research (pp. 19–26). ACM.

Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & Education, 104, 18–33.

Liao, S. N., Zingaro, D., Thai, K., Alvarado, C., Griswold, W. G., & Porter, L. (2019). A robust machine learning technique to predict low-performing students. ACM Transactions on Computing Education (TOCE), 19(3), 1–19.

Liao, S. N., Shah, K., Griswold, W. G., & Porter, L. (2021). A Quantitative Analysis of Study Habits Among Lower-and Higher-Performing Students in CS1. In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1 (pp. 366–372). ACM.

Lokkila, E., Christopoulos, A., & Laakso, M. J. (2022). A clustering method to detect disengaged students from their code submission history. In Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 1 (pp. 228–234). ACM.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363.

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Proceedings of Advances in neural information processing systems 30 (NIPS 2017).

Lunn, S., Ross, M., Hazari, Z., Weiss, M. A., Georgiopoulos, M., & Christensen, K. (2021). How do educational experiences predict computing identity? ACM Transactions on Computing Education (TOCE), 22(2), 1–28.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., ... & Szabo, C. (2018). Introductory programming: a systematic literature review. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 55–106). ACM.

Pardo, A. (2014). Designing learning analytics experiences. In J. Larusson & B. White (Eds.), learning analytics. Springer.

Pereira, F. D., Fonseca, S. C., Oliveira, E. H., Cristea, A. I., Bellhäuser, H., Rodrigues, L., ... & Carvalho, L. S. (2021). Explaining individual and collective programming students’ behavior by interpreting a black-box predictive model. IEEE Access, 9, 117097–117119.

Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). The University of Michigan.

Porter, L., Zingaro, D., & Lister, R. (2014). Predicting student success using fine grain clicker data. In Proceedings of the tenth annual conference on International computing education research (pp. 51–58). ACM.

Ramaswami, G., Susnjak, T., Mathrani, A., & Umer, R. (2022). Use of predictive analytics within learning analytics dashboards: A review of case studies. Technology, Knowledge and Learning, 28(3), 959–980.

Rets, I., Herodotou, C., Bayer, V., Hlosta, M., & Rienties, B. (2021). Exploring critical factors of the perceived usefulness of a learning analytics dashboard for distance university students. International Journal of Educational Technology in Higher Education, 18, 1–23.

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018). Extending the nomological network of computational thinking with non-cognitive factors. Computers in Human Behavior, 80, 441–459.

Rotgans, J. I., & Schmidt, H. G. (2011). Situational interest and academic achievement in the active-learning classroom. Learning and Instruction, 21(1), 58–67.

Russo, D., Masegosa, A. R., & Stol, K. J. (2022). From anecdote to evidence: The relationship between personality and need for cognition of developers. Empirical Software Engineering, 27(3), 71.

Sahlaoui, H., Nayyar, A., Agoujil, S., & Jaber, M. M. (2021). Predicting and interpreting student performance using ensemble models and shapley additive explanations. IEEE Access, 9, 152688–152703.

Salleh, N., Mendes, E., Grundy, J., & Burch, G. S. J. (2009). An empirical study of the effects of personality in pair programming using the five-factor model. In 2009 3rd International Symposium on Empirical Software Engineering and Measurement (pp. 214–225). IEEE.

Salleh, N., Mendes, E., Grundy, J., & Burch, G. S. J. (2010). The effects of neuroticism on pair programming: an empirical study in the higher education context. In Proceedings of the 2010 ACM-IEEE international symposium on empirical software engineering and measurement (pp. 1–10). ACM.

Scheffel, M., Niemann, K., & Jivet, I. (2017). The evaluation framework for learning analytics. Open Universiteit.

Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., ... & Dillenbourg, P. (2016). Perceiving learning at a glance: A systematic literature review of learning dashboard research. IEEE Transactions on Learning Technologies, 10(1), 30–41.

scikit-learn. (2023). scikit-learn: Machine Learning in Python. https://scikit-learn.org/stable/

Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512.

Silva, L., Mendes, A., Gomes, A., & Fortes, G. (2023). Fostering regulatory processes using computational scaffolding. International Journal of Computer-Supported Collaborative Learning, 18(1), 67–100.

Spacco, J., Denny, P., Richards, B., Babcock, D., Hovemeyer, D., Moscola, J., & Duvall, R. (2015). Analyzing student work patterns using programming exercise data. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 18–23). ACM.

Stoneham, R. (2015). Failing students need big data and learning analytics: Hype or reality?. Compass: Journal of Learning and Teaching, 7(11).

Streamlit. (2023). Streamlit documentation. https://docs.streamlit.io/

Susnjak, T., Ramaswami, G. S., & Mathrani, A. (2022). Learning analytics dashboard: A tool for providing actionable insights to learners. International Journal of Educational Technology in Higher Education, 19(1), 12.

Tan, P. H., Ting, C. Y., & Ling, S. W. (2009). Learning difficulties in programming courses: undergraduates' perspective and perception. In 2009 International Conference on Computer Technology and Development (Vol. 1, pp. 42–46). IEEE.

Teasley, S. D. (2017). Student facing dashboards: One size fits all? Technology, Knowledge and Learning, 22(3), 377–384.

Valle, N., Antonenko, P., Valle, D., Sommer, M., Huggins-Manley, A. C., Dawson, K., ... & Baiser, B. (2021). Predict or describe? How learning analytics dashboard design influences motivation and statistics anxiety in an online statistics course. Educational Technology Research and Development, 69(3), 1405–1431.

Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500–1509.

Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2014). Learning dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing, 18, 1499–1514.

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110.

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Proceedings of the 2014 conference on Innovation & technology in computer science education (pp. 39–44). ACM.

Watson, C., Li, F. W., & Godwin, J. L. (2014). No tests required: comparing traditional and dynamic predictors of programming success. In Proceedings of the 45th ACM technical symposium on Computer science education (pp. 469–474). ACM.

Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166–173.

Yoo, M., & Jin, S. H. (2020). Development and evaluation of learning analytics dashboards to support online discussion activities. Educational Technology & Society, 23(2), 1–18.

Zilberman, A., & Ice, L. (2021). Why computer occupations are behind strong STEM employment growth in the 2019–29 decade. Computer, 4(5,164.6), 11–5.

Zurita, G., & Nussbaum, M. (2004). Computer supported collaborative learning using wirelessly interconnected handheld computers. Computers & Education, 42(3), 289–314.