A large scale comparative genomic analysis reveals insertion sites for newly acquired genomic islands in bacterial genomes

BMC Microbiology - Tập 11 - Trang 1-7 - 2011
Pengcheng Du1, Yinxue Yang2, Haiying Wang1, Di Liu3, George F Gao4,5, Chen Chen1
1National Institute for Communicable Disease Control and Prevention, Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
2Affiliated Hospital of Ningxia Medical University, Ningxia, China
3Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
4CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
5Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Bacterial virulence enhancement and drug resistance are major threats to public health worldwide. Interestingly, newly acquired genomic islands (GIs) from horizontal transfer between different bacteria strains were found in Vibrio cholerae, Streptococcus suis, and Mycobacterium tuberculosis, which caused outbreak of epidemic diseases in recently years. Using a large-scale comparative genomic analysis of 1088 complete genomes from all available bacteria (1009) and Archaea (79), we found that newly acquired GIs are often anchored around switch sites of GC-skew (sGCS). After calculating correlations between relative genomic distances of genomic islands to sGCSs and the evolutionary distances of the genomic islands themselves, we found that newly acquired genomic islands are closer to sGCSs than the old ones, indicating that regions around sGCSs are hotspots for genomic island insertion. Based on our results, we believe that genomic regions near sGCSs are hotspots for horizontal transfer of genomic islands, which may significantly affect key properties of epidemic disease-causing pathogens, such as virulence and adaption to new environments.

Tài liệu tham khảo

Marin A, Xia X: GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias. J Theor Biol. 2008, 253: 508-513. 10.1016/j.jtbi.2008.04.004. Couturier E, Rocha EP: Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol. 2006, 59: 1506-1518. 10.1111/j.1365-2958.2006.05046.x. Frank AC, Lobry JR: Oriloc: prediction of replication boundaries in unannotated bacterial chromosomes. Bioinformatics. 2000, 16: 560-561. 10.1093/bioinformatics/16.6.560. Lobry JR: A simple vectorial representation of DNA sequences for the detection of replication origins in bacteria. Biochimie. 1996, 78: 323-326. 10.1016/0300-9084(96)84764-X. Zhang R, Zhang CT: Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun. 2003, 302: 728-734. 10.1016/S0006-291X(03)00252-3. Green P, Ewing B, Miller W, Thomas PJ, Green ED: Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet. 2003, 33: 514-517. 10.1038/ng1103. Worning P, Jensen LJ, Hallin PF, Staerfeldt HH, Ussery DW: Origin of replication in circular prokaryotic chromosomes. Environ Microbiol. 2006, 8: 353-361. 10.1111/j.1462-2920.2005.00917.x. Lobry JR: prediction of replication boundaries in unannotated bacterial chromosomes. Bioinformatics. 2000, 16: 560-561. 10.1093/bioinformatics/16.6.560. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997, 277: 1453-1462. 10.1126/science.277.5331.1453. Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M: Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus. Extremophiles. 2004, 8: 385-391. 10.1007/s00792-004-0399-y. Karlin S: Bacterial DNA strand compositional asymmetry. Trends in Microbiology. 1999, 7: 305-308. 10.1016/S0966-842X(99)01541-3. Arakawa K, Suzuki H, Tomita M: Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index. BMC Genomics. 2009, 10: 640-10.1186/1471-2164-10-640. Kowalczuk M, Mackiewicz P, Mackiewicz D, Nowicka A, Dudkiewicz M, Dudek MR, Cebrat S: DNA asymmetry and the replicational mutational pressure. J Appl Genet. 2001, 42: 553-577. Lovell HC, Mansfield JW, Godfrey SA, Jackson RW, Hancock JT, Arnold DL: Bacterial evolution by GI transfer occurs via DNA transformation in planta. Curr Biol. 2009, 19: 1586-1590. 10.1016/j.cub.2009.08.018. Pavlovic-Lazetic GM, Mitic NS, Beljanski MV: n-Gram characterization of GIs in bacterial genomes. Comput Methods Programs Biomed. 2009, 93: 241-256. 10.1016/j.cmpb.2008.10.014. Hacker J, Carniel E: Ecological fitness, GIs and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2001, 2: 376-381. Boyd EF, Almagro-Moreno S, Parent MA: GIs are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol. 2009, 17: 47-53. 10.1016/j.tim.2008.11.003. Dobrindt U, Hochhut B, Hentschel U, Hacker J: GIs in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004, 2: 414-424. 10.1038/nrmicro884. Jermyn WS, Boyd EF: Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology. 2002, 148: 3681-3693. Jermyn WS, Boyd EF: Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. Microbiology. 2005, 151: 311-322. 10.1099/mic.0.27621-0. Chen C, Tang J, Dong W, Wang C, Feng Y, Wang J, Zheng F, Pan X, Liu D, Li M, Song Y, Zhu X, Sun H, Feng T, Guo Z, Ju A, Ge J, Dong Y, Sun W, Jiang Y, Wang J, Yan J, Yang H, Wang X, Gao GF, Yang R, Wang J, Yu J: A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One. 2007, 2: e315-10.1371/journal.pone.0000315. Langille MG, Hsiao WW, Brinkman FS: Evaluation of GI predictors using a comparative genomics approach. BMC Bioinformatics. 2008, 9: 329-10.1186/1471-2105-9-329. Lehtonen S: Phylogeny estimation and alignment via POY versus Clustal + PAUP*: a response to Ogden and Rosenberg (2007). Syst Biol. 2008, 57: 653-657. 10.1080/10635150802302476. Wilgenbusch JC, Swofford D: Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics. 2003, Chapter 6: Unit Shen S, Mascarenhas M, Rahn K, Kaper JB, Karmali MA: Evidence for a hybrid GI in verocytotoxin-producing Escherichia coli CL3 (serotype O113:H21) containing segments of EDL933 (serotype O157:H7) O islands 122 and 48. Infect Immun. 2004, 72: 1496-1503. 10.1128/IAI.72.3.1496-1503.2004. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The structure of haplotype blocks in the human genome. Science. 2002, 296: 2225-2229. 10.1126/science.1069424. Wall JD, Pritchard JK: Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet. 2003, 4: 587-597. Liang Y, Hou X, Wang Y, Cui Z, Zhang Z, Zhu X, Xia L, Shen X, Cai H, Wang J, Xu D, Zhang E, Zhang H, Wei J, He J, Song Z, Yu XJ, Yu D, Hai R: Genome rearrangements of completely sequenced strains of Yersinia pestis. J Clin Microbiol. 2010, 48: 1619-1623. 10.1128/JCM.01473-09. Jeffreys AJ, Kauppi L, Neumann R: Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001, 29: 217-222. 10.1038/ng1001-217. Hacker J, Kaper JB: Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000, 54: 641-679. 10.1146/annurev.micro.54.1.641.