A kinetic model of TBP auto-regulation exhibits bistability

Sucheta A. Gokhale1, Reema Roshan2, Vivek Khetan3, Beena Pillai2, Chetan Gadgil1
1Chemical Engineering and Process Development Division, National Chemical Laboratory, CSIR, Pune, 411008, India
2Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
3Chemical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Tóm tắt

Abstract Background TATA Binding Protein (TBP) is required for transcription initiation by all three eukaryotic RNA polymerases. It participates in transcriptional initiation at the majority of eukaryotic gene promoters, either by direct association to the TATA box upstream of the transcription start site or by indirectly localizing to the promoter through other proteins. TBP exists in solution in a dimeric form but binds to DNA as a monomer. Here, we present the first mathematical model for auto-catalytic TBP expression and use it to study the role of dimerization in maintaining the steady state TBP level. Results We show that the autogenous regulation of TBP results in a system that is capable of exhibiting three steady states: an unstable low TBP state, one stable state corresponding to a physiological TBP concentration, and another stable steady state corresponding to unviable cells where no TBP is expressed. Our model predicts that a basal level of TBP is required to establish the transcription of the TBP gene, and hence for cell viability. It also predicts that, for the condition corresponding to a typical mammalian cell, the high-TBP state and cell viability is sensitive to variation in DNA binding strength. We use the model to explore the effect of the dimer in buffering the response to changes in TBP levels, and show that for some physiological conditions the dimer is not important in buffering against perturbations. Conclusions Results on the necessity of a minimum basal TBP level support the in vivo observations that TBP is maternally inherited, providing the small amount of TBP required to establish its ubiquitous expression. The model shows that the system is sensitive to variations in parameters indicating that it is vulnerable to mutations in TBP. A reduction in TBP-DNA binding constant can lead the system to a regime where the unviable state is the only steady state. Contrary to the current hypotheses, we show that under some physiological conditions the dimer is not very important in restoring the system to steady state. This model demonstrates the use of mathematical modelling to investigate system behaviour and generate hypotheses governing the dynamics of such nonlinear biological systems. Reviewers This article was reviewed by Tomasz Lipniacki, James Faeder and Anna Marciniak-Czochra.

Từ khóa


Tài liệu tham khảo

Ferrell JE: Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol. 2002, 14: 140-148. 10.1016/S0955-0674(02)00314-9.

Tian T, Burrage K: Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage lambda. J Theor Biol. 2004, 227: 229-237. 10.1016/j.jtbi.2003.11.003.

Veening JW, Hamoen LW, Kuipers OP: Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol. 2005, 56: 1481-1494. 10.1111/j.1365-2958.2005.04659.x.

Goldberger RF: Autogenous regulation of gene expression. Science. 1974, 183: 810-816. 10.1126/science.183.4127.810.

Halvorsen YC, Nandabalan K, Dickson RC: LAC9 DNA-binding domain coordinates two zinc atoms per monomer and contacts DNA as a dimer. J Biol Chem. 1990, 265: 13283-13289.

Zachariae W, Breunig KD: Expression of the transcriptional activator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation. Mol Cell Biol. 1993, 13: 3058-3066.

Cranz S, Berger C, Baici A, Jelesarov I, Bosshard HR: Monomeric and dimeric bZIP transcription factor GCN4 bind at the same rate to their target DNA site. Biochemistry. 2004, 43: 718-727. 10.1021/bi0355793.

Keller AD: Model genetic circuits encoding autoregulatory transcription factors. J Theor Biol. 1995, 172: 169-185. 10.1006/jtbi.1995.0014.

Verma M, Rawool S, Bhat PJ, Venkatesh KV: Biological significance of autoregulation through steady state analysis of genetic networks. Biosystems. 2006, 84: 39-48. 10.1016/j.biosystems.2005.10.001.

Chalut C, Gallois Y, Poterszman A, Moncollin V, Egly JM: Genomic structure of the human TATA-box-binding protein (TBP). Gene. 1995, 161: 277-282. 10.1016/0378-1119(95)00209-O.

Ohbayashi T, Schmidt EE, Makino Y, Kishimoto T, Nabeshima Y, Muramatsu M, Tamura T: Promoter structure of the mouse TATA-binding protein (TBP) gene. Biochem Biophys Res Commun. 1996, 225: 275-280. 10.1006/bbrc.1996.1166.

Pugh BF, Tjian R: Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991, 5: 1935-1945. 10.1101/gad.5.11.1935.

Tjian R: The biochemistry of transcription in eukaryotes: a paradigm for multisubunit regulatory complexes. Philosophical Transactions: Biological Sciences. 1996, 351: 491-499. 10.1098/rstb.1996.0047.

Cormack BP, Struhl K: The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell. 1992, 69: 685-696. 10.1016/0092-8674(92)90232-2.

White RJ, Jackson SP, Rigby PW: A role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proceedings of the National Academy of Sciences of the United States of America. 1992, 89: 1949-10.1073/pnas.89.5.1949.

Hernandez N: TBP, a universal eukaryotic transcription factor?. Genes Dev. 1993, 7: 1291-1308. 10.1101/gad.7.7b.1291.

Coleman RA, Pugh BF: Slow dimer dissociation of the TATA binding protein dictates the kinetics of DNA binding. Proc Natl Acad Sci USA. 1997, 94: 7221-7226. 10.1073/pnas.94.14.7221.

Nikolov DB, Chen H, Halay ED, Hoffman A, Roeder RG, Burley SK: Crystal structure of a human TATA box-binding protein/TATA element complex. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93: 4862-10.1073/pnas.93.10.4862.

Coleman RA, Taggart AK, Benjamin LR, Pugh BF: Dimerization of the TATA binding protein. J Biol Chem. 1995, 270: 13842-13849. 10.1074/jbc.270.23.13842.

Jackson-Fisher AJ, Chitikila C, Mitra M, Pugh BF: A role for TBP dimerization in preventing unregulated gene expression. Mol Cell. 1999, 3: 717-727. 10.1016/S1097-2765(01)80004-6.

Payer B, Saitou M, Barton SC, Thresher R, Dixon JPC, Zahn D, Colledge WH, Carlton MBL, Nakano T, Surani MA: Stella is a maternal effect gene required for normal early development in mice. Current Biology. 2003, 13: 2110-2117. 10.1016/j.cub.2003.11.026.

Farley BM, Ryder SP: Regulation of maternal mRNAs in early development. Critical Reviews in Biochemistry and Molecular Biology. 2008, 43: 135-162. 10.1080/10409230801921338.

Ma J, Zeng F, Schultz RM, Tseng H: Basonuclin: a novel mammalian maternal-effect gene. Development. 2006, 133: 2053-10.1242/dev.02371.

Edelmann L, Zheng L, Wang ZF, Marzluff W, Wessel GM, Childs G: The TATA binding protein in the sea urchin embryo is maternally derived. Developmental Biology. 1998, 204: 293-304. 10.1006/dbio.1998.9052.

Chatterjee S, Struhl K: Connecting a promoter-bound protein to the TATA-binding protein overrides the need for a transcriptional activation region. Nature. 1995, 374: 820-822. 10.1038/374820a0.

Strubin M, Struhl K: Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell. 1992, 68: 721-730. 10.1016/0092-8674(92)90147-5.

van Roon-Mom WMC, Reid SJ, Faull RLM, Snell RG: TATA-binding protein in neurodegenerative disease. Neuroscience. 2005, 133: 863-872. 10.1016/j.neuroscience.2005.03.024.

Friedman MJ, Wang CE, Li XJ, Li S: Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem. 2008, 283: 8283-8290. 10.1074/jbc.M709674200.

Isaacs FJ, Hasty J, Cantor CR, Collins JJ: Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci USA. 2003, 100: 7714-7719. 10.1073/pnas.1332628100.

Becskei A, Seraphin B, Serrano L: Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 2001, 20: 2528-2535. 10.1093/emboj/20.10.2528.

Borggrefe T, Davis R, Bareket-Samish A, Kornberg RD: Quantitation of the RNA polymerase II transcription machinery in yeast. Journal of Biological Chemistry. 2001, 276: 47150-47153. 10.1074/jbc.M109581200.

Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Hieter P, Vogelstein B, Kinzler KW: Characterization of the Yeast Transcriptome. Cell. 1997, 88: 243-251. 10.1016/S0092-8674(00)81845-0.

Lewin B, Krebs JE, Goldstein ES, Kilpatrick ST: Essential genes. 2009, Jones & Bartlett Publishers

Denissov S, van Driel M, Voit R, Hekkelman M, Hulsen T, Hernandez N, Grummt I, Wehrens R, Stunnenberg H: Identification of novel functional TBP-binding sites and general factor repertoires. The EMBO Journal. 2007, 26: 944-954. 10.1038/sj.emboj.7601550.

Heinrich R, Rapoport SM, Rapoport TA: Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977, 32: 1-82. 10.1016/0079-6107(78)90017-2.

Weideman CA, Netter RC, Benjamin LR, McAllister JJ, Schmiedekamp LA, Coleman RA, Pugh BF: Dynamic interplay of TFIIA, TBP and TATA DNA. J Mol Biol. 1997, 271: 61-75. 10.1006/jmbi.1997.1152.

Schmidt EE, Schibler U: High accumulation of components of the RNA polymerase II transcription machinery in rodent spermatids. Development. 1995, 121: 2373-2383.