A luxR Homolog, aviR, in Agrobacterium vitis Is Associated with Induction of Necrosis on Grape and a Hypersensitive Response on Tobacco

Molecular Plant-Microbe Interactions - Tập 16 Số 7 - Trang 650-658 - 2003
Desen Zheng1, Hongsheng Zhang, Sigrid Carle, Guixia Hao, Michele R Holden, Thomas J. Bürr
1Department of Plant Pathology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA,

Tóm tắt

A Tn5 mutant of Agrobacterium vitis F2/5 (M1154) differs from the wild-type strain in that it has lost its abilities to cause necrosis on grape and a hypersensitive-like response (HR) on tobacco. The Tn5 insertion occurred in an open reading frame (ORF) aviR that is homologous to genes encoding the LuxR family of transcriptional regulators, thereby suggesting that the HR and necrosis are regulated by a quorum-sensing system. Fewer N-acyl-homoserine lactone autoinducers were detected in extracts from M1154 compared with extracts from F2/5 and from aviR-complemented M1154. The complemented mutant regained full ability to cause grape necrosis and HR. Eighteen ORFs located on a 36.6-kb insert in cosmid clone CPB221, which includes aviR, were sequenced and aligned with homologous genes from A. tumefaciens C58 and Sinorhizobium meliloti Rm1021. The order of several clustered genes is conserved among the bacteria; however, rearrangements are also apparent. Reverse transcriptase-polymerase chain reaction analysis indicated that ORF2 and ORF14 may be regulated by an aviR-encoded transcriptional regulator. Single site-directed mutations in each of the ORFs, however, had no effect on expression of HR or necrosis as compared with the wild-type parent.

Từ khóa


Tài liệu tham khảo

10.1126/science.7792599

10.1146/annurev.phyto.37.1.53

10.1128/jb.171.3.1609-1615.1989

10.1073/pnas.161294398

10.1094/MPMI.1998.11.11.1119

10.1073/pnas.71.9.3672

Dunn M. G., 2001, Microbiol., 176, 355

10.1046/j.1365-2958.1999.01261.x

10.1146/annurev.micro.50.1.727

10.1128/jb.177.9.2396-2402.1995

10.1094/PHYTO.2001.91.10.966

Ielipi L., 1990, J. Biological Chem, 265, 2843, 10.1016/S0021-9258(19)39878-3

10.1016/S0378-1119(96)00778-0

10.1128/JB.182.15.4173-4179.2000

10.1046/j.1365-2958.2000.01960.x

10.1073/pnas.96.16.9009

10.1128/JB.184.20.5686-5695.2002

10.1128/JB.185.1.325-331.2003

10.1128/jb.175.10.2793-2798.1993

10.1146/annurev.micro.55.1.165

10.1094/MPMI.2000.13.11.1243

10.1111/j.1365-2958.1994.tb01069.x

10.1016/S0378-1119(97)00590-8

10.1094/MPMI-4-163

Pearson J. P., 1999, J. Bacteriol., 181, 1203, 10.1128/JB.181.4.1203-1210.1999

10.1128/JB.184.18.5067-5076.2002

10.1111/j.1365-2958.1994.tb01085.x

10.1093/emboj/19.19.5212

Roao M. B., 1998, Microbiol. Mol. Biol. Rev., 62, 597, 10.1128/MMBR.62.3.597-635.1998

10.1073/pnas.94.12.6036

Slock J., 1990, J. Bacteriol., 177, 815

10.1128/jb.170.8.3523-3530.1988

10.1128/JB.182.7.1779-1787.2000

10.1111/j.1574-6976.2001.tb00583.x

10.1126/science.1066804

10.1038/nature00833

10.1073/pnas.96.9.4832

10.1073/pnas.96.9.4832