Một protein tiết loại III của Burkholderia pseudomallei, BopE, hỗ trợ xâm nhập của vi khuẩn vào tế bào biểu mô và thể hiện hoạt tính trao đổi nucleotide guanine

Journal of Bacteriology - Tập 185 Số 16 - Trang 4992-4996 - 2003
Mark P. Stevens1, Andrea Friebel2, Lowrie A. Taylor1, Michael W. Wood1, Philip J. Brown1, Wolf‐Dietrich Hardt2, Edouard E. Galyov1
1Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, United Kingdom
2Institute of Microbiology, Swiss Federal Institute of Technology Zurich, ETH Zentrum, CH-8092 Zurich, Switzerland

Tóm tắt

TÓM TẮT

Chúng tôi báo cáo sự đặc trưng của BopE, một protein tiết loại III, được mã hóa gần với locus Burkholderia pseudomallei bsa và có tính đồng dạng với Salmonella enterica SopE/SopE2. Sự bất hoạt của bopE đã làm giảm khả năng xâm nhập của vi khuẩn vào tế bào HeLa, cho thấy rằng BopE thúc đẩy sự xâm lấn. Phù hợp với ý tưởng này, BopE được biểu hiện trong các tế bào nhân thực dẫn đến những biến đổi trong khung xương tế bào dưới vỏ, và BopE tinh khiết cho thấy hoạt tính của yếu tố trao đổi nucleotide guanine đối với Cdc42 và Rac1 trong điều kiện in vitro.

Từ khóa

#BopE #Burkholderia pseudomallei #protein tiết loại III #xâm nhập vi khuẩn #tế bào biểu mô #hoạt tính yếu tố trao đổi nucleotide guanine (GEF)

Tài liệu tham khảo

Attree, O., and I. Attree. 2001. A second type III secretion system in Burkholderia pseudomallei: who is the real culprit? Microbiology147:3197-3199.

Bakshi, C. S., V. P. Singh, M. W. Wood, P. W. Jones, T. S. Wallis, and E. E. Galyov. 2000. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol.82:2341-2344.

Brett, P. J., and D. E. Woods. 2000. Pathogenesis of and immunity to melioidosis. Acta Trop.74:201-210.

Chaowagul, W., Y. Suputtamongkol, D. A. B. Dance, A. Rajchanuvong, J. Pattaraarechachai, and N. J. White. 1993. Relapse in melioidosis: incidence and risk factors. J. Infect. Dis.168:1181-1185.

Cornelis, G. R., and F. van Gijsegem. 2000. Assembly and function of type III secretion systems. Annu. Rev. Microbiol.54:735-774.

Dance, D. A. 2000. Melioidosis is an emerging global problem. Acta Trop.74:115-119.

Franken, S. M., A. J. Scheidig, U. Krengel, H. Rensland, A. Lautwein, M. Geyer, K. Scheffzek, R. S. Goody, H. R. Kalbitzer, E. F. Pai, et al. 1993. Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. Biochemistry32:8411-8420.

Friebel, A., H. Ilchmann, M. Aepfelbacher, K. Ehrbar, W. Machleidt, and W.-D. Hardt. 2001. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J. Biol. Chem.276:34035-34040.

Friebel, A., and W.-D. Hardt. 2000. Purification and biochemical activity of Salmonella exchange factor SopE. Methods Enzymol.325:82-91.

Galán, J. E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell. Dev. Biol.17:53-86.

Galyov, E. E., M. W. Wood, R. Rosqvist, P. B. Mullan, P. R. Watson, S. Hedges, and T. S. Wallis. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol.25:903-912.

Hardt, W.-D., L. M. Chen, K. E. Schuebel, X. R. Bustelo, and J. E. Galán. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell93:815-826.

10.1128/MMBR.62.2.379-433.1998

10.1128/iai.64.3.782-790.1996

10.1128/jb.177.24.7078-7085.1995

10.1128/IAI.68.9.5377-5384.2000

Lamarche, N., N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, J. Chant, and A. Hall. 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell87:519-529.

Lenzen, C., R. H. Cool, and A. Wittinghofer. 1995. Analysis of intrinsic and CDC25-stimulated guanine nucleotide exchange of p21ras-nucleotide complexes by fluorescence measurements. Methods Enzymol.255:95-109.

Lenzen, C., R. H. Cool, H. Prinz, J. Kuhlmann, and A. Wittinghofer. 1998. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry37:7420-7430.

Leonard, D. A., T. Evans, M. Hart, R. A. Cerione, and D. Manor. 1994. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using fluorescence spectroscopy. Biochemistry33:12323-12328.

Mays, E. E., and E. A. Ricketts. 1975. Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest68:261-263.

10.1128/JB.183.7.2348-2358.2001

Mukherjee, K., S. Parashuraman, M. Raje, and A. Mukhopadhyay. 2001. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J. Biol. Chem.276:23607-23615.

Norris, F. A., M. P. Wilson, T. S. Wallis, E. E. Galyov, and P. W. Majerus. 1998. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphatase. Proc. Natl. Acad. Sci. USA95:14057-14059.

Pruksachartvuthi, S., N. Aswapokee, and K. Thankerngpol. 1990. Survival of Pseudomonas pseudomallei in human phagocytes. J. Med. Microbiol.31:109-114.

Rainbow, L., C. A. Hart, and C. Winstanley. 2002. Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei.J. Med. Microbiol.51:374-384.

Rudolph, M. G., C. Weise, S. Mirold, B. Hillenbrand, B. Bader, A. Wittinghofer, and W.-D. Hardt. 1999. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J. Biol. Chem.274:30501-30509.

Rudolph, M. G., P. Bayer, A. Abo, J. Kuhlmann, I. R. Vetter, and A. Wittinghofer. 1998. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem.273:18067-18076.

Sansonetti, P. J. 2001. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol. Rev.25:3-14.

Stender, S., A. Friebel, S. Linder, M. Rohde, S. Mirold, and W.-D. Hardt. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol.36:1206-1221.

10.1046/j.1365-2958.2002.03190.x

Tan, Y. C., H. Wu, W. N. Wang, Y. Zheng, and Z. X. Wang. 2002. Characterization of the interactions between the small GTPase RhoA and its guanine nucleotide exchange factors. Anal. Biochem.310:156-162.

Wallis, T. S., and E. E. Galyov. 2000. Molecular basis of Salmonella-induced enteritis. Mol. Microbiol.36:997-1005.

Wood, M. W., M. A. Jones, P. R. Watson, A. M. Siber, B. A. McCormick, S. Hedges, R. Rosqvist, T. S. Wallis, and E. E. Galyov. 2000. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell. Microbiol.2:293-303.

Wood, M. W., R. Rosqvist, P. B. Mullan, M. H. Edwards, and E. E. Galyov. 1996. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a Sip-dependent mechanism and promotes bacterial entry. Mol. Microbiol.22:327-338.

10.1128/IAI.71.1.1-12.2003

Zhang, S., R. L. Santos, R. M. Tsolis, S. Mirold, W.-D. Hardt, L. G. Adams, and A. J. Baumler. 2002. Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol. Lett.217:243-247.

Zhou, D., and J. Galán. 2001. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect.3:1293-1298.

Zhou, D., L. M. Chen, L. Hernandez, S. B. Shears, and J. E. Galán. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol.39:248-259.