A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids

Science Robotics - Tập 3 Số 20 - 2018
Hengyu Guo1,2,3, Xianjie Pu2, Jie Chen2, Yan Meng2, Min‐Hsin Yeh4, Guanlin Liu1,2, Qian Tang2, Baodong Chen1, Di Liu1, Song Qi2, Changsheng Wu3, Chenguo Hu2, Jie Wang1, Zhong Lin Wang1,3
1Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
2Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China.
3School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
4Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Tóm tắt

A self-powered triboelectric auditory sensor is designed for human-robot interactions.

Từ khóa


Tài liệu tham khảo

10.1126/scirobotics.aar7650

10.5898/JHRI.6.1.Admoni

10.1023/A:1013298507114

N. Oishi, J. Schacht, Emerging treatments for noise-induced hearing loss. Expert Opin. Emerg. Drugs 16, 235–245 (2011).

B. O. Olusanya, K. J. Neumann, J. E. Saunders, The global burden of disabling hearing impairment: A call to action. Bull. World Health Organ. 92, 367–373 (2014).

M. M. Popelka, K. J. Cruickshanks, T. L. Wiley, T. S. Tweed, B. E. K. Klein, R. Klein, Low prevalence of hearing aid use among older adults with hearing loss: The epidemiology of hearing loss study. J. Am. Geriatr. Soc. 46, 1075–1078 (1998).

C. Meyer, L. Hickson, What factors influence help-seeking for hearing impairment and hearing aid adoption in older adults? Int. J. Audiol. 51, 66–74 (2012).

M. Tate The hearing aid system in Principles of Hearing Aid Audiology (Springer 1994) pp. 73–94.

S. Launer J. A. Zakis B. C. J. Moore Hearing aid signal processing in Hearing Aids G. R. Popelka B. C. J. Moore R. R. Fay A. N. Popper Eds. (Springer International Publishing 2016) pp. 93–130.

E. Villchur, Signal processing to improve speech intelligibility in perceptive deafness. J. Acoust. Soc. Am. 53, 1646–1657 (1973).

10.1038/nature19100

10.1126/scirobotics.aan1544

10.1038/srep12447

10.1002/adfm.201402270

J. Jang, S. Kim, D. J. Sly, S. J. O’Leary, H. Choi, MEMS piezoelectric artificial basilar membrane with passive frequency selectivity for short pulse width signal modulation. Sens. Actuators A Phys. 203, 6–10 (2013).

S. Kim, W. J. Song, J. Jang, J. H. Jang, H. Choi, Mechanical frequency selectivity of an artificial basilar membrane using a beam array with narrow supports. J. Micromech. Microeng. 23, 095018 (2013).

W. C. Jones, L. W. Giles, A moving coil microphone for high quality sound reproduction. J. Soc. Motion Pic. Eng. 17, 977–993 (1931).

10.1038/nmat2834

10.1038/nnano.2006.208

10.1016/j.nanoen.2012.01.004

10.1038/ncomms9376

Z. L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014).

10.1038/ncomms10987

10.1016/j.mattod.2016.12.001

10.1038/nnano.2017.17

10.1038/ncomms12744

10.1126/sciadv.1600097

Z. L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017).

10.1038/nenergy.2016.138

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, Z. Lin Wang, Harvesting low-frequency (<5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 10, 4797–4805 (2016).

10.1038/ncomms9975

10.1126/sciadv.1700694

10.1002/adma.201404794

10.1016/j.nanoen.2014.10.034

10.1021/acsnano.6b04440

10.1126/sciadv.1700015

10.1002/adma.201304619

10.1021/acsnano.5b00618

10.1002/adhm.201600232

P. M. Morse, K. U. Ingard, Theoretical acoustics. Am. J. Phys. 38, 666–667 (1970).

D. K. Davies, Charge generation on dielectric surfaces. J. Phys. D. Appl. Phys. 2, 1533 (1969).

A. R. J. Murray, I. R. Summers, J. R. Sambles, A. P. Hibbins, An acoustic double fishnet using Helmholtz resonators. J. Acoust. Soc. Am. 136, 980–984 (2014).