A high throughput live transparent animal bioassay to identify non-toxic small molecules or genes that regulate vertebrate fat metabolism for obesity drug development

Nutrition & Metabolism - Tập 5 Số 1 - 2008
Kevin S. Jones1, Alexander P. Alimov2, Horacio Rilo2, Ronald J. Jandacek3, Laura A. Woollett3, William Todd Penberthy1
1Department of Genome Science, University of Cincinnati, Cincinnati, USA
2Department of Surgery, University of Cincinnati, Cincinnati USA
3Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, USA

Tóm tắt

Abstract Background The alarming rise in the obesity epidemic and growing concern for the pathologic consequences of the metabolic syndrome warrant great need for development of obesity-related pharmacotherapeutics. The search for such therapeutics is severely limited by the slow throughput of animal models of obesity. Amenable to placement into a 96 well plate, zebrafish larvae have emerged as one of the highest throughput vertebrate model organisms for performing small molecule screens. A method for visually identifying non-toxic molecular effectors of fat metabolism using a live transparent vertebrate was developed. Given that increased levels of nicotinamide adenine dinucleotide (NAD) via deletion of CD38 have been shown to prevent high fat diet induced obesity in mice in a SIRT-1 dependent fashion we explored the possibility of directly applying NAD to zebrafish. Methods Zebrafish larvae were incubated with daily refreshing of nile red containing media starting from a developmental stage of equivalent fat content among siblings (3 days post-fertilization, dpf) and continuing with daily refreshing until 7 dpf. Results PPAR activators, beta-adrenergic agonists, SIRT-1 activators, and nicotinic acid treatment all caused predicted changes in fat, cholesterol, and gene expression consistent with a high degree of evolutionary conservation of fat metabolism signal transduction extending from man to zebrafish larvae. All changes in fat content were visually quantifiable in a relative fashion using live zebrafish larvae nile red fluorescence microscopy. Resveratrol treatment caused the greatest and most consistent loss of fat content. The resveratrol tetramer Vaticanol B caused loss of fat equivalent in potency to resveratrol alone. Significantly, the direct administration of NAD decreased fat content in zebrafish. Results from knockdown of a zebrafish G-PCR ortholog previously determined to decrease fat content in C. elegans support that future GPR142 antagonists may be effective non-toxic anti-obesity therapeutics. Conclusion Owing to the apparently high level of evolutionary conservation of signal transduction pathways regulating lipid metabolism, the zebrafish can be useful for identifying non-toxic small molecules or pharmacological target gene products for developing molecular therapeutics for treating clinical obesity. Our results support the promising potential in applying NAD or resveratrol where the underlying target protein likely involves Sirtuin family member proteins. Furthermore data supports future studies focused on determining whether there is a high concentration window for resveratrol that is effective and non-toxic in high fat obesity murine models.

Từ khóa


Tài liệu tham khảo

Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP: The spread of the obesity epidemic in the United States, 1991–1998. Jama 1999, 282: 1519-1522. 10.1001/jama.282.16.1519

Ogden CL, Carroll MD, Flegal KM: High body mass index for age among US children and adolescents, 2003–2006. Jama 2008, 299: 2401-2405. 10.1001/jama.299.20.2401

Wolf AM, Colditz GA: Social and economic effects of body weight in the United States. Am J Clin Nutr 1996, 63: 466S-469S.

Heller S: Weight gain during insulin therapy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2004,65(Suppl 1):S23-27. 10.1016/j.diabres.2004.07.005

Bell CG, Walley AJ, Froguel P: The genetics of human obesity. Nat Rev Genet 2005, 6: 221-234. 10.1038/nrg1556

Vogel G: Zebrafish earns its stripes in genetic screens. Science 2000, 288: 1160-1161. 10.1126/science.288.5469.1160

Westerfield M: The Zebrafish Book. Oregon, University of Oregon Press; 1995.

Jandacek RJ, Heubi JE, Tso P: A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology 2004, 127: 139-144. 10.1053/j.gastro.2004.04.007

Woollett LA, Wang Y, Buckley DD, Yao L, Chin S, Granholm N, Jones PJ, Setchell KD, Tso P, Heubi JE: Micellar solubilisation of cholesterol is essential for absorption in humans. Gut 2006, 55: 197-204. 10.1136/gut.2005.069906

Padilla PA, Roth MB: Oxygen deprivation causes suspended animation in the zebrafish embryo. Proc Natl Acad Sci USA 2001, 98: 7331-7335. 10.1073/pnas.131213198

Penberthy WT, Zhao C, Zhang Y, Jessen JR, Yang Z, Bricaud O, Collazo A, Meng A, Lin S: Pur alpha and Sp8 as opposing regulators of neural gata2 expression. Dev Biol 2004, 275: 225-234. 10.1016/j.ydbio.2004.08.007

Schlegel A, Stainier DY: Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 2006, 45: 15179-15187. 10.1021/bi0619268

Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G: Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003, 421: 268-272. 10.1038/nature01279

Karpe F, Frayn KN: The nicotinic acid receptor – a new mechanism for an old drug. Lancet 2004, 363: 1892-1894. 10.1016/S0140-6736(04)16359-9

Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429: 771-776. 10.1038/nature02583

Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S: PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 2003, 9: 352-355. 10.1038/nm824

Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, Friedewald W: Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 1986, 8: 1245-1255.

Knowles HJ, te Poele RH, Workman P, Harris AL: Niacin induces PPAR-gamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem Pharmacol 2006, 71: 646-656. 10.1016/j.bcp.2005.11.019

Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH, Grunfeld C, Feingold KR: Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 2000, 141: 4021-4031. 10.1210/en.141.11.4021

Tabata Y, Takano K, Ito T, Iinuma M, Yoshimoto T, Miura H, Kitao Y, Ogawa S, Hori O: Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am J Physiol Cell Physiol 2007, 293: C411-418. 10.1152/ajpcell.00095.2007

Gille A, Bodor ET, Ahmed K, Offermanns S: Nicotinic acid: pharmacological effects and mechanisms of action. Annu Rev Pharmacol Toxicol 2008, 48: 79-106. 10.1146/annurev.pharmtox.48.113006.094746

Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA: Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 2003, 107: 1355-1358. 10.1161/01.CIR.0000061912.88753.87

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444: 337-342. 10.1038/nature05354

Tian WX: Inhibition of fatty acid synthase by polyphenols. Curr Med Chem 2006, 13: 967-977. 10.2174/092986706776361012

Bluher M, Kahn BB, Kahn CR: Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003, 299: 572-574. 10.1126/science.1078223

Susens U, Hermans-Borgmeyer I, Urny J, Schaller HC: Characterization and differential expression of two very closely related G-protein-coupled receptors, GPR139 and GPR142, in mouse tissue and during mouse development. Neuropharmacology 2006, 50: 512-520. 10.1016/j.neuropharm.2005.11.003

Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004, 306: 1383-1386. 10.1126/science.1100747

Langin D: Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 2006,53(6):482-491. 10.1016/j.phrs.2006.03.009

Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD: Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 2006, 281: 491-500. 10.1074/jbc.M508414200

Barbosa MT, Soares SM, Novak CM, Sinclair D, Levine JA, Aksoy P, Chini EN: The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. Faseb J 2007,21(13):3629-3639. 10.1096/fj.07-8290com

Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, Zhang P, Lu H: Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci 2007, 12: 2728-2734. 10.2741/2267