A high‐temperature chemical kinetic model for primary reference fuels

International Journal of Chemical Kinetics - Tập 39 Số 7 - Trang 399-414 - 2007
Marcos Chaos1, Andrei F. Kazakov1, Zhenwei Zhao1, Frederick L. Dryer1
1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544‐5263

Tóm tắt

AbstractA chemical kinetic mechanism has been developed to describe the high‐temperature oxidation and pyrolysis of n‐heptane, iso‐octane, and their mixtures. An approach previously developed by this laboratory was used here to partially reduce the mechanism while maintaining a desired level of detailed reaction information. The relevant mechanism involves 107 species undergoing 723 reactions and has been validated against an extensive set of experimental data gathered from the literature that includes shock tube ignition delay measurements, premixed laminar‐burning velocities, variable pressure flow reactor, and jet‐stirred reactor species profiles. The modeled experiments treat dynamic systems with pressures up to 15 atm, temperatures above 950 K, and equivalence ratios less than approximately 2.5. Given the stringent and comprehensive set of experimental conditions against which the model is tested, remarkably good agreement is obtained between experimental and model results. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 399–414, 2007

Từ khóa


Tài liệu tham khảo

10.1016/S0010-2180(72)80183-4

Burcat A., 1981, Proc Int Symp Shock Waves, 13, 826

10.2514/2.5744

10.2514/2.5942

10.1002/kin.20120

Niemitz K. J., 1988, Proc Combust Inst, 22, 893

Burcat A., 1991, Proc Int Symp Shock Waves, 18, 771

10.1002/kin.10173

10.1016/S0082-0784(98)80442-6

10.2514/2.5598

10.1016/j.combustflame.2004.08.011

10.1080/00102209708935624

10.1080/00102208608923850

10.1080/00102209408935336

10.1080/00102209408907701

10.1016/S0082-0784(06)80016-0

10.1016/S0082-0784(96)80284-0

10.1016/S0010-2180(97)00282-4

10.1016/S0010-2180(01)00373-X

PRF mechanism available at:http://www‐cms.llnl.gov/combustion/combustion2.html#PRF 2004.

10.1002/kin.20026

10.1080/00102200590883769

n‐Heptane mechanism available at:http://www‐cms.llnl.gov/combustion/combustion2.html#n‐C7H16_detailed_mechanism 2004.

Isooctane mechanism available at:http://www‐cms.llnl.gov/combustion/combustion2.html#i‐C8H18 2004.

10.1063/1.555623

10.1080/00102208408923750

10.1002/kin.550180109

10.1002/kin.550230506

10.1063/1.555806

10.1002/kin.550120903

10.1021/i160067a006

Allison T.;Tsang W.Second Joint Meeting of the US Sections of the Combustion Institute Oakland CA March2001.

Benson S. W., 1976, Thermochemical Kinetics

10.1007/978-3-642-83224-6_3

10.1063/1.555880

10.1016/S0082-0784(00)80556-1

Chaos M.;Kazakov A.;Zhao Z.;Dryer F. L.;Zeppieri S. P.Eastern States Fall Technical Meeting of the Combustion Institute Nov.13–15 2005; paper2549.

Kee R. J.;Rupley F. M.;Miller J. A.Technical Report SAND89–8009; Sandia National Laboratories Albuquerque NM 1989.

Kee R. J.;Grcar J. F.;Smooke M. D.;Miller J. A.Technical Report SAND85‐8240; Sandia National Laboratories Albuquerque NM 1985.

Kee R. J.;Dixon‐Lewis G.;Warnatz J.;Coltrin M. E.;Miller J. A.Technical Report SAND86‐8246; Sandia National Laboratories Albuquerque NM 1986.

Lutz A. E.;Kee R. J.;Miller J. A.Technical Report SAND87‐8248; Sandia National Laboratories Albuquerque NM 1987.

Glarborg P.;Kee R. J.;Grcar J. F.;Miller J. A.Technical Report SAND86‐8209; Sandia National Laboratories Albuquerque NM 1986.

10.1016/0010-2180(93)90142-P

Davidson D. F.;Hitch B.;Horning D. C.;Hanson R. K.Joint Meeting of the U.S. of the Combustion Institute March15–17 1999.

10.1016/j.combustflame.2004.08.015

10.1021/jp057224u

Burcat A.Personal communication.

http://www‐cms.llnl.gov/combustion/combustion2.html#PRF.

10.1080/00102208608923853

10.1016/S0082-0784(81)80042-2

Oehlschlaeger M. A.;Davidson D. F.Personal communication.

10.1021/ef020025e

Brezinsky K.;Dryer F. L.SAE paper 872109 1987.

10.1080/00102209408935336

10.1080/00102209408907703