A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling
Tóm tắt
Industrial processes cause significant emissions of greenhouse gases (GHGs) to the atmosphere and, therefore, have high mitigation and adaptation potential for global change. Spatially explicit (gridded) emission inventories (EIs) should allow us to analyse sectoral emission patterns to estimate the potential impacts of emission policies and support decisions on reducing emissions. However, such EIs are often based on simple downscaling of national level emission estimates and the changes in subnational emission distributions do not necessarily reflect the actual changes driven by the local emission drivers. This article presents a high-definition, 100-m resolution bottom-up inventory of GHG emissions from industrial processes (fuel combustion activities in energy and manufacturing industries, fugitive emissions, mineral products, chemical industries, metal production and food and drink industries), which is exemplified for data for Poland. The study objectives include elaboration of the universal approach for mapping emission sources, algorithms for emission disaggregation, estimation of emissions at the source level and uncertainty analysis. We start with IPCC-compliant national sectoral GHG estimates made using Polish official statistics and, then, propose an improved emission disaggregation algorithm that fully utilises a collection of activity data available at the national/provincial level to the level of individual point and diffused (area) emission sources. To ensure the accuracy of the resulting 100-m resolution emission fields, the geospatial data used for mapping emission sources (point source geolocation and land cover classification) were subject to thorough human visual inspection. The resulting 100-m emission field even holds cadastres of emissions separately for each industrial emission category. We also compiled cadastres in regular grids and, then, compared them with the Emission Database for Global Atmospheric Research (EDGAR). A quantitative analysis of discrepancies between both results reveals quite frequent misallocations of point sources used in the EDGAR compilation that considerably deteriorate high-resolution inventories. We also use a Monte-Carlo method-based uncertainty assessment that yields a detailed estimation of the GHG emission uncertainty in the main categories of the analysed processes. We found that the above-mentioned geographical coordinates and patterns used for emission disaggregation have the greatest impact on the overall uncertainty of GHG inventories from the industrial processes. We evaluate the mitigation potential of industrial emissions and the impact of separate emission categories. This study proposes a method to accurately quantify industrial emissions at a policy relevant spatial scale in order to contribute to the local climate mitigation via emission quantification (local to national) and scientific assessment of the mitigation effort (national to global). Apart from the above, the results are also of importance for studies that confront bottom-up and top-down approaches and represent much more accurate data for global high-resolution inventories to compare with.
Tài liệu tham khảo
Akbostanci E, Tunç GI, Türüt-Aşik S (2011) CO2 emissions of Turkish manufacturing industry: a decomposition analysis. Appl Energy 88(6):2273–2278. https://doi.org/10.1016/j.apenergy.2010.12.076
Akimoto H, Narita H (1994) Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1° × 1° resolution. Atmos Environ 28(2):213–225. https://doi.org/10.1016/1352-2310(94)90096-5
Andres RJ, Marland G, Fung I, Matthews E (1996) A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Glob Biogeochem Cycles 10(3):419–429. https://doi.org/10.1029/96GB01523
Andres RJ, Boden TA, Marland G (2009) Annual fossil-fuel CO2 emissions: mass of emissions gridded by one degree latitude by one degree longitude. Carbon Dioxide Information Analysis Center. https://doi.org/10.3334/CDIAC/ffe.ndp058.2009
Andrew RM (2018) Global CO2 emissions from cement production. Earth Syst Sci Data 10:195–217. https://doi.org/10.5194/essd-10-195-2018
BDL (2016) Bank Danych Lokalnych (Local Data Bank), GUS, Warsaw, Poland. Available: http://stat.gov.pl/bdl. Accessed 30 Jun 2017
Boychuk K, Bun R (2014) Regional spatial inventories (cadastres) of GHG emissions in the energy sector: accounting for uncertainty. Clim Chang 124(3):561–574. https://doi.org/10.1007/s10584-013-1040-9
Bun R, Gusti M, Kujii L, Tokar O, Tsybrivskyy Y, Bun A (2007) Spatial GHG inventory: analysis of uncertainty sources. A case study for Ukraine. Water Air Soil Pollut 7(4–5):483–494. https://doi.org/10.1007/s11267-006-9116-4
Bun R, Nahorski Z, Horabik-Pyzel J, Danylo O, See L, Charkovska N, Topylko P, Halushchak M, Lesiv M, Valakh M, Kinakh V (2019) Development of a high resolution spatial inventory of GHG emissions for Poland from stationary and mobile sources. Mitig Adapt Strateg Glob Chang. https://doi.org/10.1007/s11027-018-9791-2
Büttner G, Kosztra B, Maucha G, Pataki R (2012) Implementation and achievements of CLC2006. Institute of Geodesy, Cartography and Remote Sensing (FÖMI), 65 p
Cai B, Wang J, He J, Geng Y (2016) Evaluating CO2 emission performance in China’s cement industry: an enterprise perspective. Appl Energy 166:191–200. https://doi.org/10.1016/j.apenergy.2015.11.006
Charkovska N, Bun R, Nahorski Z, Horabik J (2012) Mathematical modeling and spatial analysis of emission processes in Polish industry sector: cement, lime and glass production. Econtechmod 1(4):17–22
Charkovska N (2015a) Mathematical modeling and spatial analysis of greenhouse gas emission processes in the industrial and agricultural sectors of Poland. PhD thesis, Lviv Polytechnic National University, p 224
Charkovska N, Bun R, Nahorski Z, Horabik J (2015b) Modelling GHG emissions in the mineral products industry in Poland: an uncertainty analysis. Mathematical Modeling and Computing 2(1):16–26. https://doi.org/10.23939/mmc2015.01.016
Charkovska N, Halushchak M, Bun R, Jonas M (2015c) Uncertainty analysis of GHG spatial inventory from the industrial activity: A case study for Poland. Proceedings of the 4th International Workshop on Uncertainty in Atmospheric Emissions, Warsaw, SRI PAS, pp 57–63
Cheng Y-P, Wang L, Zhang X-L (2011) Environmental impact of coal mine methane emissions and responding strategies in China. Int J Greenh Gas Con 5(1):157–166. https://doi.org/10.1016/j.ijggc.2010.07.007
Corine (2006) Corine Land Cover data. Available: http://www.eea.europa.eu/. Accessed 28 Jun 2017
EDGAR (2013) Emissions Database for Global Atmospheric Research (Joint Research Centre). Available: http://edgar.jrc.ec.europa.eu/. Accessed 03 Aug 2017
Elgowainy A, Han J, Cai H, Wang M, Forman GS, DiVita VB (2014) Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries. Environ Sci Technol 48(13):7612–7624. https://doi.org/10.1021/es5010347
Elkin HF (2015) Petroleum refinery emissions. Sources of Air Pollution and Their Control: Air Pollution, Stern AC, ed.: 97–121. ISBN: 978-0-12-666553-6
EPA (2018) Global greenhouse gas emissions data. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. Accessed 20 April 2018
Garnett T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36:S23–S32. https://doi.org/10.1016/j.foodpol.2010.10.010
Geng Y, Wei Y-M, Fischedick M, Chiu A, Chen B, Yan J (2016) Recent trend of industrial emissions in developing countries. Appl Energy 166:187–190. https://doi.org/10.1016/j.apenergy.2016.02.060
Griffina PW, Hammondab GP, Normana JB (2018) Industrial energy use and carbon emissions reduction in the chemicals sector: a UK perspective. Appl Energy 227:587–602. https://doi.org/10.1016/j.apenergy.2017.08.010
Gurney KR, Mendoza DL, Zhou Y, Fischer ML, Miller CC, Geethakumar S, de la Rue du Can S (2009) High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ Sci Technol 43(14):5535–5541. https://doi.org/10.1021/es900806c
Gurney K, Razlivanov I, Song Y, Zhou Y, Benes B, Abdul-Massih M (2012) Quantification of fossil fuel CO2 emission on the building/street scale for a large US city. Environ Sci Technol 46(21):12194–12202. https://doi.org/10.1021/es3011282
GUS (2016) Główny Urząd Statystyczny (Central Statistical Office of Poland). Available: http://stat.gov.pl/en/. Accessed 10 Jul 2017
Halushchak M (2017) Mathematical modeling and spatial analysis of processes of greenhouse gas emissions from using fuels in the industrial sector in Ukraine and Poland. PhD thesis, Lviv Polytechnic National University, 184 p
Halushchak M, Bun R, Jonas M, Topylko P (2015) Spatial inventory of GHG emissions from fossil fuels extraction and processing: an uncertainty analysis. Proceedings of the 4th International Workshop on Uncertainty in Atmospheric Emissions, Warsaw, SRI PAS, 64–70
Halushchak M, Bun R, Shpak N, Valakh M (2016) Modeling and spatial analysis of greenhouse gas emissions from fuel combustion in the industry sector in Poland. Econtechmod 5(1):19–26
Hao H, Geng Y, Hang W (2016) GHG emissions from primary aluminum production in China: regional disparity and policy implications. Appl Energy 166:264–272. https://doi.org/10.1016/j.apenergy.2015.05.056
Hogue S, Marland E, Andres RJ, Marland G, Woodard D (2016) Uncertainty in gridded CO2 emissions estimates. Earth’s Future 4(5):225–239. https://doi.org/10.1002/2015EF000343
Hogue S, Roten D, Marland E, Marland G, Boden T (2019) Gridded estimates of CO2 emissions: uncertainty as a function of scale. Mitig Adapt Strateg Glob Chang. https://doi.org/10.1007/s11027-017-9770-z
Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 30(11–12):2042–2056. https://doi.org/10.1016/j.energy.2004.07.020
Hutchins MG, Colby JD, Marland G, Marland E (2017) A comparison of five high-resolution spatially-explicit fossil fuel carbon dioxide emissions inventories. Mitig Adapt Strateg Glob Chang 22(6):26. https://doi.org/10.1007/s11027-016-9709-9
IEA (2016) Medium-term coal market report 2016. http://www.iea.org/newsroom/news/2016/december/medium-term-coal-market-report-2016.html. Accessed 20 March 2018
IPCC (2001) Good practice guidance and uncertainty management in national greenhouse gas inventories, Penman Jim, Dina Kruger, Ian Galbally, Taka Hiraishi, Buruhani Nyenzi, Sal Emmanuel, Lenadro Buendia, Robert Hoppaus, Thomas Martinsen, Jeroen Meijer, Kyoko Miwa and Kiyoko Tanabe
IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds)
IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc.ch/report/ar5/wg2/. Cited 05 Sep 2017
IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Cambridge University Press, Cambridge and New York. http://www.ipcc.ch/report/ar5/wg2/. Cited 08 Dec 2017
Jarnicka J, Żebrowski P (2019) Learning in GHG emission inventories in terms of uncertainty improvement over time. Mitig Adapt Strateg Glob Chang (this issue)
Jonas M, Żebrowski P (2019) The crux with reducing emissions in the long-term: the underestimated “now” versus the overestimated “then”. Mitig Adapt Strateg Glob Chang. https://doi.org/10.1007/s11027-018-9825-9
Kiemle C, Ehret G, Amediek A, Fix A, Quatrevalet M, Wirth M (2017) Potential of spaceborne lidar measurements of carbon dioxide and methane emissions from strong point sources. Remote Sens 9(1137):1–16. https://doi.org/10.3390/rs9111137
Lamarque JF, Shindell DT, Josse B, Young P, Cionni I, Eyring V, Bergmann D, Cameron-Smith P, Collins WJ, Doherty RM, Dalsoren SB, Faluvegi G, Folberth G, Ghan S, Horowitz LW, Lee Y, MacKenzie IA, Nagashima T, Naik V, Plummer DA, Righi M, Rumbold S, Schulz M, Skeie R, Stevenson DS, Strode S, Sudo K, Szopa S, Voulgarakis A, Zeng G (2013) The atmospheric chemistry and climate model intercomparison project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geosci Model Dev 6(1):179–206. https://doi.org/10.5194/gmd-6-179-2013
Laurent A, Olsen SI, Hauschild MZ (2010) Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Ann Manuf Technol 59(1):37–40. https://doi.org/10.1016/j.cirp.2010.03.008
Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Klein Goldewijk K, Koven C, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O'Brien K, Olsen A, Ono T, Pérez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Rödenbeck C, Saito S, Schuster U, Schwinger J, Séférian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Syst Sci Data 7:349–396. https://doi.org/10.5194/essd-7-349-2015
Lina B, Xubc B (2018) Growth of industrial CO2 emissions in Shanghai city: evidence from a dynamic vector autoregression analysis. Energy 151:167–177. https://doi.org/10.1016/j.energy.2018.03.052
Liu J (2016) National carbon emissions from the industry process: production of glass, soda ash, ammonia, calcium carbide and alumina. Appl Energy 166:239–244. https://doi.org/10.1016/j.apenergy.2015.11.005
Liu Z, Dong H, Geng Y, Lu C, Ren W (2014) Insights into the regional greenhouse gas (GHG) emission of industrial processes: a case study of Shenyang, China. Sustainability 6:3669–3685. https://doi.org/10.3390/su6063669
Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, Peng S, Zhang Q, Hubacek K, Marland G, Andres RJ, Crawford-Brown D, Lin J, Zhao H, Hong C, Boden TA, Feng K, Peters GP, Xi F, Liu J, Li Y, Zhao Y, Zeng N, He K (2015) Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524:335–338. https://doi.org/10.1038/nature14677
Liu Z, Geng Y, Adams M, Dong L, Sun L, Zhao J, Dong H, Wu J, Tian X (2016) Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis. Appl Energy 166:253–263. https://doi.org/10.1016/j.apenergy.2015.11.075
Liu Y, Gruber N, Brunner D (2017) Spatiotemporal patterns of the fossil-fuel CO2 signal in Central Europe: results from a high-resolution atmospheric transport model. Atmos Chem Phys 16:14145–14169. https://doi.org/10.5194/acp-17-14145-2017
Long R, Shao T, Chen H (2016) Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors. Appl Energy 166:210–219. https://doi.org/10.1016/j.apenergy.2015.09.100
Motazedi K, Abella JP, Bergerson JA (2017) Techno-economic evaluation of technologies to mitigate greenhouse gas emissions at North American refineries. Environ Sci Technol 51(3):1918–1928. https://doi.org/10.1021/acs.est.6b04606
NIR (2012) Poland’s National Inventory Report 2012, KOBIZE, Warsaw, 2012, 358 p. Available: http://unfccc.int/national_reports. Accessed 09 Jul 2017
Oda T, Maksyutov S (2011) A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos Chem Phys 11:543–556. https://doi.org/10.5194/acp-11-543-2011
Oda T, Maksyutov Sh (2015) ODIAC fossil fuel CO2 emissions dataset (version name: ODIAC2016). Center for Global Environmental Research, National Institute for Environmental Studies. https://doi.org/10.17595/20170411.001
Oda T, Maksyutov S, Andres RJ (2018) The open-source data inventory for anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst Sci Data 10:87–107. https://doi.org/10.5194/essd-10-87-2018
Olivier JGJ, Van Aardenne JA, Dentener F, Pagliari V, Ganzeveld LN, Peters JA (2005) Recent trends in global greenhouse gas emissions: regional trends 1970-2000 and spatial distribution of key sources in 2000. J Integr Environ Sci 2(2–3):81–99. https://doi.org/10.1080/15693430500400345
Ometto JP, Bun R, Jonas M, Nahorski Z (Eds) (2015) Uncertainties in greenhouse gas inventories - expanding our perspective. Springer, 239 p. ISBN 978-3-319-15901-0
Park S, Lee S, Jeong SJ, Song HJ, Park JW (2010) Assessment of CO2 emissions and its reduction potential in the Korean petroleum refining industry using energy-environment models. Energy 35(6):2419–2429. https://doi.org/10.1016/j.energy.2010.02.026
Pengab J, Xieab R, Laiac M (2018) Energy-related CO2 emissions in the China’s iron and steel industry: a global supply chain analysis. Resour Conserv Recycl 129:392–401. https://doi.org/10.1016/j.resconrec.2016.09.019
Pétron G, Tans P, Frost G, Chao D, Trainer M (2008) High-resolution emissions of CO2 from power generation in the USA. J Geophys Res 113(G4):1–9. https://doi.org/10.1029/2007JG000602
Peylin P, Houweling S, Krol MC, Karstens U, Rödenbeck C, Geels C, Vermeulen A, Badawy B, Aulagnier C, Pregger T, Dalege F, Pieterse G, Cias P, Heinemann M (2011) Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison. Atmos Chem Phys 11:6607–6622. https://doi.org/10.5194/acp-11-6607-2011
Puliafito SE, Allende D, Pinto S, Castesana P (2015) High resolution inventory of GHG emissions of the road transport sector in Argentina. Atmos Environ 101:303–311. https://doi.org/10.1016/j.atmosenv.2014.11.040
Raupach MR, Rayner PJ, Paget M (2010) Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energ Policy 38(9):4756–4764. https://doi.org/10.1016/j.enpol.2009.08.021
Rayner PJ, Raupach MR, Paget M, Peylin P, Koffi E (2010) A new global gridded data set of CO2 emissions from fossil fuel combustion: methodology and evaluation. J Geophys Res 115(D19):306. https://doi.org/10.1029/2009JD013439
Rehan R, Nehdi M (2005) Carbon dioxide emissions and climate change: policy implications for the cement industry. Environ Sci Pol 8(2):105–114. https://doi.org/10.1016/j.envsci.2004.12.006
Ren S, Yin H, Chen XH (2014) Using LMDI to analyze the decoupling of carbon dioxide emissions by China’s manufacturing industry. Environ Dev 9:61–75. https://doi.org/10.1016/j.envdev.2013.11.003
Schneising O, Burrows JP, Dickerson RR, Buchwitz M, Reuter M, Bovensmann H (2014) Remote sensing of fugitive methane emissions from oil and gas production in north American tight geologic formations. Earth’s Future 2(10):548–558. https://doi.org/10.1002/2014EF000265
Shan Y, Liu Z, Guan D (2016) CO2 emissions from China’s lime industry. Appl Energy 166:245–252. https://doi.org/10.1016/j.apenergy.2015.04.091
Shao S, Liu J, Geng Y, Miao Z, Yang Y (2016) Uncovering driving factors of carbon emissions from China’s mining sector. Appl Energy 166:220–238. https://doi.org/10.1016/j.apenergy.2016.01.047
Shi Y, Zhao T (2016) A decomposition analysis of carbon dioxide emissions in the Chinese nonferrous metal industry. Mitig Adapt Strateg Glob Chang 21:823–838. https://doi.org/10.1007/s11027-014-9624-x
Singer AM, Branham M, Hutchins MG, Welker J, Woodard DL, Badurek CA, Ruseva T, Marland E, Marland G (2014) The role of CO2 emissions from large point sources in emissions totals, responsibility, and policy. Environ Sci Pol 44:190–200. https://doi.org/10.1016/j.envsci.2014.08.001
Su S, Beath A, Guo H, Mallett C (2005) An assessment of mine methane mitigation and utilisation technologies. Prog Energy Combust Sci 31(2):123–170. https://doi.org/10.1016/j.pecs.2004.11.001
Szklo A, Schaeffer R (2007) Fuel specification, energy consumption and CO2 emission in oil refineries. Energy 32(7):1075–1092. https://doi.org/10.1016/j.energy.2006.08.008
Tian Y, Zhu Q, Geng Y (2013) An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry. Energy Policy 56:352–361. https://doi.org/10.1016/j.enpol.2012.12.068
Tong D, Zhang Q, Davis SJ, Liu F, Zheng B, Geng G, Xue T, Li M, Hong C, Lu Z, Streets DG, Guan D, He K (2018) Targeted emission reductions from global super-polluting power plant units. Nature Sustainability Analysis 1:59–68. https://doi.org/10.1038/s41893-017-0003-y
Topylko P, Halushchak M, Bun R, Oda T, Lesiv M, Danylo O (2015) Spatial greenhouse gas (GHG) inventory and uncertainty analysis: a case study of electricity generation in Poland and Ukraine. Proceedings of the 4th International Workshop on Uncertainty in Atmospheric Emissions, Warsaw, SRI PAS, 49–56
UNFCCC (1998) Kyoto Protocol to the United Nations Framework Convention on Climate Change, http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 19 Dec 2017
UNFCCC (2015) Paris Agreement, http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf. Accessed 19 Dec 2017
UNFCCC (2017) National Inventory Submissions, http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/10116.php. Accessed 30 Dec 2017
Verstraete J (2017) The spatial disaggregation problem: simulating reasoning using a fuzzy inference system. IEEE Trans Fuzzy Syst 25(3):627–641. https://doi.org/10.1109/TFUZZ.2016.2567452
Warmuzinski K (2008) Harnessing methane emissions from coal mining. Process Saf Environ Prot 86(5):315–320. https://doi.org/10.1016/j.psep.2008.04.003
WB (2018) World Bank Open Data, https://data.worldbank.org/indicator. Accessed 13 Mar 2018
White Th, Jonas M, Nahorski Z, Nilsson S (Eds.) (2011) Greenhouse gas inventories: dealing with uncertainty. Springer, 343 p. ISBN 978-94-007-1670-4
Woodard D, Branham M, Buckingham G, Hogue S, Hutchins M, Gosky R, Marland G, Marland E (2015) A spatial uncertainty metric for anthropogenic CO2 emissions. Greenhouse Gas Measurement and Management 4:139–160. https://doi.org/10.1080/20430779.2014.1000793
Wu J, Zhu Q, Liang L (2016) CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China. Appl Energy 166:282–291. https://doi.org/10.1016/j.apenergy.2016.01.008
Yang H, Liu J, Jiang K, Meng J, Guan D, Xu Y, Tao S (2018) Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China’s iron and steel industry. J Clean Prod 185:331–341. https://doi.org/10.1016/j.jclepro.2018.02.092
Yu S, Gao S, Sun H (2016) A dynamic programming model for environmental investment decision-making in coal mining. Appl Energy 166:273–281. https://doi.org/10.1016/j.apenergy.2015.09.099
Yuab S, Huab X, Fanc J, Chengab J (2018) Convergence of carbon emissions intensity across Chinese industrial sectors. J Clean Prod 194:179–192. https://doi.org/10.1016/j.jclepro.2018.05.121
Zhang Y-J, Hao J-F, Song J (2016) The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: evidence from the regional level. Appl Energy 174:213–223. https://doi.org/10.1016/j.apenergy.2016.04.109
Zheng B, Zhang Q, Tong D, Chen C, Hong C, Li M, Geng G, Lei Y, Huo H, He K (2017) Resolution dependence of uncertainties: a case study in Hebei, China. Atmos Chem Phys 17:921–933. https://doi.org/10.5194/acp-17-921-2017