A geometric model for active contours in image processing

Vicent Caselles1, Francine Catté2, Tomeu Coll1, Françoise Dibos2
1Department de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma de Mallorca (Balears), Spain#TAB#
2CEREMADE, Université de Paris-Dauphine, Paris Cedex 16, France F-75775#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alvarez, L., Lions, P.L., Morel, J.M. (1991): Image selective smoothing and edge detection by nonlinear diffusion (II). Cahier du CEREMADE no 9046, Univ. Paris IX-Dauphine, Paris

Amini, A.A., Tehrani, S., Weymouth, T.E. (1988): Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. Proc. Second ICCV. 95?99

Ayache, N., Boissonat, J.D., Brunet, E., Cohen, L., Chièze, J.P., Geiger, B., Monga, O., Rocchisani, J.M., Sander, P. (1989): Building highly structured volume representations in 3d medical images. Computer Aided Radiology. Berlin

Barles, G. (1985): Remarks on a flame propagation model. Rapport INRIA,464, 1?38

Berger, M.O. (1990): Snake growing. O. Faugeras, ed., Computer Vision-ECCV90. Lect. Notes Comput. Sci.427, 570?572

Berger, M.O., Mohr, R. (1990): Towards Autonomy in Active Contour Models. Proc. 10th Int. Conf. Patt. Recogn. Atlantic City, NY, vol1, 847?851

Blake, A., Zisserman, A. (1987): Visual Reconstruction. MIT Press, Cambridge, MA

Chen, Y.-G., Giga, Y., Goto, S. (1989): Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations. Preprint Series in Math. Ser. 57. July, Hokkaido University, Sapporo, Japan

Cinquin, P. (1986): Un modèle pour la représentation d'images médicales 3d: Proceedings Euromédicine. (Sauramps Médical)86, 57?61

Cinquin, P. (1987): Application des Fonctions Spline au Traitement d'Images Numériques. Université Joseph Fourier, Grenoble

Cinquin, P., Goret, C., Marque, I., Lavallee, S. (1987): Morphoscopie et modélisation continue d'images 3d. Conférence AFCET IA & Reconnaissance des Formes. AFCET pp. 907?922, Paris

Cohen, L.D. (1991): On active Contour Models and Balloons. CVGIP: Image Understanding53, 211?218

Cohen, L.D., Cohen, I. (1990): A finite element method applied to new active contour models and 3D reconstruction from cross sections. Proc. Third ICCV, 587?591

Cohen, L.D. (1989): On active Contour Models. Technical Report 1035, INRIA, Rocquencourt, Le Chesnay, France

Crandall, M.G., Lions, P.L. (1983): Viscosity Solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.277, 1?42

Crandall, M.G., Evans, L.C., Lions, P.L. (1984): Some properties of Viscosity Solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.282, 487?502

Crandall, M.G., Ishii, I., Lions, P.L. (1991): User's guide to Viscosity Solutions of Second Order Partial Differential Equations. Cahier du CEREMADE no 9039. Univ. Paris IX-Dauphine, Paris

Evans, L.C., Spruck, J. (1991): Motion of level sets by mean curvature I. J. Diff. Geometry,33, 635?681

Friedman, A. (1982): Variational Principles and Free Boundary Problems. Wiley, New York

Gage, M. (1983): An isoperimetric inequality with applications to curve shortening. Duke Math. J.50, 1225?1229

Gage, M. (1984): Cuve shortening makes convex curves circular. Invent. Math.76, 357?364

Gage, M., Hamilton, R.S. (1986): The heat equation shrinking convex plane curves. J. Diff. Geom.23, 69?96

Giga, Y., Goto, S., Ishii, I., Sato, M.-H. (1990): Comparison Principle and Convexity Preserving Properties of Singular Degenerate Parabolic Equations on Unbounded Domains. Preprint Hokkaido University, 1?32, Sapporo, Japan

Grayson, M.A. (1987): The heat equation shrinks embedded plane curves to round points. J. Diff. Geom.26, 285?314

Hirsch, M. (1976): Differential Topology. Springer, Berlin Heidelberg New York

Kass, M., Witkin, A., Terzopoulos, D. (1988): Snakes: active contour models. Int. J. Comput. Vision.1, 321?331

Kass, M., Witkin, A., Terzopoulos, D. (1987): Snakes: active contour models. Proc. First ICCV, 259?267

Ladyzhenskaja, O.A., Solonnikov, V.A., Ural'tseva, N.N. (1968): Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, R.I.

Leroy, B. (1991): Etude de quelques propriétés des modèles de contours actifs (?snakes?). Rapport de stage de D.E.A. Univ. Paris-IX Dauphine, Septembre

Lions, P.L. (1982). Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics69, Pitman, Boston

Marr, D. (1982): Vision. Freeman, San Francisco

Marr, D., Hildreth, E. (1980): A theory of edge detection. Proc. R. Soc. Lond. B207, 187?217

Osher, S., Sethian, J.A. (1988): Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Comput. J. Physics.79, 12?49

Poggio, T., Torre, V., Koch, C. (1985): Computational vision and regularization theory. Nature,317 (6035), 314?319

Terzopoulos, D. (1986): Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Anal. Mach. Intell.8: 413?424

Terzopoulos, D. (1988): The computation of visible surface representations. IEEE Trans. Pattern Anal. Mach. Intell.10(4), 417?438

Terzopoulos, D., Witkin, A., Kass, M. (1987): Symmetry seeking models for 3d object reconstruction. Proc. First ICCV, 269?276

Terzopoulos, D., Witkin, A., Kass, M. (1988): Constraints on deformable models: recovering 3d shape and nonrigid motion. Artif. Intell.36, 91?123

Zucker, S., David, C., Dobbins, A., Iverson, L. (1988): The Organization of Curve Detection: Coarse Tangent Fields and Fine Spline Coverings. In Second International Conference on Computer Vision. pp. 568?577, Tampa Florida (USA)