A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds
Tóm tắt
Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs.
Tài liệu tham khảo
Albarella U, Dobney K, Ervynk A, Rowley-Conwy P: Pigs and Humans: 10,000 Years of Interaction. 2007, Oxford: Oxford University Press
Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L: The origin of the domestic pig: independent domestication and subsequent introgression. Genetics. 2000, 154 (4): 1785-1791.
Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, et al: Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012, 491 (7424): 393-398. 10.1038/nature11622.
Gautier M, Flori L, Riebler A, Jaffrezic F, Laloe D, Gut I, Moazami-Goudarzi K, Foulley JL: A whole genome Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics. 2009, 10: 550-10.1186/1471-2164-10-550.
Gautier M, Naves M: Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Mol Ecol. 2011, 20 (15): 3128-3143. 10.1111/j.1365-294X.2011.05163.x.
Flori L, Fritz S, Jaffrezic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M: The genome response to artificial selection: a case study in dairy cattle. PLoS One. 2009, 4 (8): e6595-10.1371/journal.pone.0006595.
Qanbari S, Pimentel EC, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H: A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet. 2010, 41 (4): 377-389.
Qanbari S, Gianola D, Hayes B, Schenkel F, Miller S, Moore S, Thaller G, Simianer H: Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics. 2011, 12 (1): 318-10.1186/1471-2164-12-318.
Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF, Madeoy J, Nicholas TJ, Neff MW: Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci U S A. 2010, 107 (3): 1160-1165. 10.1073/pnas.0909918107.
Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S, et al: Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010, 464 (7288): 587-591. 10.1038/nature08832.
Nielsen R: Molecular signatures of natural selection. Annu Rev Genet 2005. 2005, 39: 197-218.
Akey JM, Zhang G, Zhang K, Jin L, Shriver MD: Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002, 12 (12): 1805-1814. 10.1101/gr.631202.
Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, et al: Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002, 419 (6909): 832-837. 10.1038/nature01140.
Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, et al: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE. 2009, 4 (8): e6524-10.1371/journal.pone.0006524.
Li J, Yang H, Li JR, Li HP, Ning T, Pan XR, Shi P, Zhang YP: Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity. 2010, 105 (3): 274-281. 10.1038/hdy.2009.191.
Ren J, Duan Y, Qiao R, Yao F, Zhang Z, Yang B, Guo Y, Xiao S, Wei R, Ouyang Z, et al: A missense mutation in PPARD causes a major QTL effect on ear size in pigs. PLoS Genet. 2011, 7 (5): e1002043-10.1371/journal.pgen.1002043.
Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, Green RD, Hamernik DL, Kappes SM, Lien S, et al: Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009, 324 (5926): 528-532.
Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, et al: Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10 (2): e1001258-10.1371/journal.pbio.1001258.
Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, Keele JW, Smith TP, Chitko-McKown CG, Laegreid WW: Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm Genome. 2002, 13 (5): 272-281. 10.1007/s00335-001-2146-3.
Fontanesi L, D’Alessandro E, Scotti E, Liotta L, Crovetti A, Chiofalo V, Russo V: Genetic heterogeneity and selection signature at the KIT gene in pigs showing different coat colours and patterns. Anim Genet. 2010, 41 (5): 478-492. 10.1111/j.1365-2052.2010.02054.x.
Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK: Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development. 1999, 126 (11): 2335-2343.
Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB: Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci. 1999, 19 (14): 5980-5989.
Saleque S, Cameron S, Orkin SH: The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 2002, 16 (3): 301-306. 10.1101/gad.959102.
Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A: Pax6 induces ectopic eyes in a vertebrate. Development. 1999, 126 (19): 4213-4222.
Kimura C, Shen MM, Takeda N, Aizawa S, Matsuo I: Complementary functions of Otx2 and Cripto in initial patterning of mouse epiblast. Dev Biol. 2001, 235 (1): 12-32. 10.1006/dbio.2001.0289.
Bishop KM, Rubenstein JL, O’Leary DD: Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci. 2002, 22 (17): 7627-7638.
Offermanns S, Zhao LP, Gohla A, Sarosi I, Simon MI, Wilkie TM: Embryonic cardiomyocyte hypoplasia and craniofacial defects in G alpha q/G alpha 11-mutant mice. EMBO J. 1998, 17 (15): 4304-4312. 10.1093/emboj/17.15.4304.
Wang X, Pasolli HA, Williams T, Fuchs E: AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J Cell Biol. 2008, 183 (1): 37-48. 10.1083/jcb.200804030.
Vranckx R, Rouaze-Romet M, Savu L, Mechighel P, Maya M, Nunez EA: Regulation of rat thyroxine-binding globulin and transthyretin: studies in thyroidectomized and hypophysectomized rats given tri-iodothyronine or/and growth hormone. J Endocrinol. 1994, 142 (1): 77-84. 10.1677/joe.0.1420077.
Xu C, Li CY, Kong AN: Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005, 28 (3): 249-268. 10.1007/BF02977789.
Pardridge WM: The blood–brain barrier: bottleneck in brain drug development. NeuroRx: J Am Soc Exp NeuroTherapeutics. 2005, 2 (1): 3-14. 10.1602/neurorx.2.1.3.
Kim CM, Goldstein JL, Brown MS: cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J Biol Chem. 1992, 267 (32): 23113-23121.
van Es MA, Van Vught PW, Blauw HM, Franke L, Saris CG, Andersen PM, Van Den Bosch L, de Jong SW, Van’t Slot R, Birve A, et al: ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol. 2007, 6 (10): 869-877. 10.1016/S1474-4422(07)70222-3.
Consortium TWTCC: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447 (7145): 661-678. 10.1038/nature05911.
Wang S, Chen L: Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes and Infection/Institut Pasteur. 2004, 6 (8): 759-766. 10.1016/j.micinf.2004.03.007.
Goswami D, Conway GS: Premature ovarian failure. Hum Reprod Update. 2005, 11 (4): 391-410. 10.1093/humupd/dmi012.
Lacombe A, Lee H, Zahed L, Choucair M, Muller JM, Nelson SF, Salameh W, Vilain E: Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet. 2006, 79 (1): 113-119. 10.1086/505406.
Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993, 75 (1): 59-72.
Rubin CJ, Megens HJ, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, Wang C, Carlborg O, Jern P, Jorgensen CB, et al: Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012, 109 (48): 19529-19536. 10.1073/pnas.1217149109.
Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998, 93 (3): 397-409. 10.1016/S0092-8674(00)81168-X.
Zhong J, Yang P, Muta K, Dong R, Marrero M, Gong F, Wang CY: Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock. PLoS ONE. 2010, 5 (3): e9593-10.1371/journal.pone.0009593.
Munoz G, Ovilo C, Estelle J, Silio L, Fernandez A, Rodriguez C: Association with litter size of new polymorphisms on ESR1 and ESR2 genes in a Chinese-European pig line. Genet Sel Evol. 2007, 39 (2): 195-206. 10.1186/1297-9686-39-2-195.
Gunawan A, Kaewmala K, Uddin MJ, Cinar MU, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K: Association study and expression analysis of porcine ESR1 as a candidate gene for boar fertility and sperm quality. Anim Reprod Sci. 2011, 128 (1–4): 11-21.
van Rens BT, de Groot PN, van der Lende T: The effect of estrogen receptor genotype on litter size and placental traits at term in F2 crossbred gilts. Theriogenology. 2002, 57 (6): 1635-1649. 10.1016/S0093-691X(02)00671-4.
Karlsson S, Moen T: The power to detect artificial selection acting on single loci in recently domesticated species. BMC Res Notes. 2010, 3: 232-10.1186/1756-0500-3-232.
Holsinger KE, Weir BS: Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet. 2009, 10 (9): 639-650. 10.1038/nrg2611.
Zhang C, Plastow G: Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock. Curr Genomics. 2011, 12 (2): 138-146. 10.2174/138920211795564386.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007, 81 (3): 559-575. 10.1086/519795.
Raymond M, Rousset F: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995, 86: 248-249.