A generalized metric space and related fixed point theorems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Czerwik, S: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11 (1993)
Akkouchi, M: Common fixed point theorems for two self mappings of a b-metric space under an implicit relation. Hacet. J. Math. Stat. 40(6), 805-810 (2011)
Berinde, V: Sequences of operators and fixed points in quasimetric spaces. Stud. Univ. Babeş-Bolyai, Math. 41, 23-27 (1996)
Boriceanu, M, Bota, M, Petrusel, A: Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010)
Czerwik, S, Dlutek, K, Singh, SL: Round-off stability of iteration procedures for set-valued operators in b-metric spaces. J. Natur. Phys. Sci. 11, 87-94 (2007)
Kirk, W, Shahzad, N: b-Metric spaces. In: Fixed Point Theory in Distance Spaces, pp. 113-131. Springer, Berlin (2014)
Popovic, B, Radenovic, S, Shukla, S: Fixed point results to tvs-cone b-metric spaces. Gulf J. Math. 1, 51-64 (2013)
Hitzler, P, Seda, AK: Dislocated topologies. J. Electr. Eng. 51(12), 3-7 (2000)
Aage, CT, Salunke, JN: The results on fixed points in dislocated and dislocated quasi-metric space. Appl. Math. Sci. 2(59), 2941-2948 (2008)
Ahamad, MA, Zeyada, FM, Hasan, GF: Fixed point theorems in generalized types of dislocated metric spaces and its applications. Thai J. Math. 11, 67-73 (2013)
Hitzler, P: Generalized metrics and topology in logic programming semantics. Dissertation, Faculty of Science, National University of Ireland, University College, Cork (2001)
Karapinar, E, Salimi, P: Dislocated metric space to metric spaces with some fixed point theorems. Fixed Point Theory Appl. 2013, 222 (2013)
Nakano, H: Modular semi-ordered spaces, Tokyo, Japan (1959)
Dominguez Benavides, T, Khamsi, MA, Samadi, S: Uniformly Lipschitzian mappings in modular function spaces. Nonlinear Anal. 46(2), 267-278 (2001)
Hajji, A, Hanebaly, E: Fixed point theorem and its application to perturbed integral equations in modular function spaces. Electron. J. Differ. Equ. 2005, 105 (2005)
Khamsi, MA: Nonlinear semigroups in modular function spaces. Math. Jpn. 37, 291-299 (1992)
Khamsi, MA, Kozlowski, WM, Reich, S: Fixed point theory in modular function spaces. Nonlinear Anal. 14, 935-953 (1990)
Kozlowski, WM: Modular Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 122. Dekker, New York (1988)
Razani, A, Pour, SH, Nabizadeh, E, Mohamadi, MB: A new version of the Ćirić quasi-contraction principle in the modular space. Novi Sad J. Math. 43(2), 1-9 (2003)
Ćirić, LB: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267-273 (1974)
Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132(5), 1435-1443 (2004)