A general formulation of alternating direction methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Birkhoff, G., andR. S. Varga: Implicit alternating direction methods. Trans. Amer. Math. Soc.92, 13–24 (1959).
Brian, P. L. T.: A finite-difference method of high-order accuracy for the solution of three-dimensional heat conduction problems. A. I. Ch. E. J.7, 367–370 (1961).
Douglas, J.: On the numerical integration ofU xx +U yy =U t by implicit methods. J. Soc. Ind. Appl. Math.3, 42–65 (1955).
—: On the relation between stability and convergence in the numerical solution of linear parabolic and hyperbolic differential equations. J. Soc. Ind. Appl. Math.4, 20–37 (1956).
Douglas, J.: A survey of numerical methods for parabolic differential equations. Advances in Computers, vol. II,F. L. Alt (editor), Academic Press 1961, pp. 1–54.
—, andJ. E. Gunn: Two high-order correct difference analogues for the equation of multidimensional heat flow. Math. of Comp.17, 71–80 (1963).
——: Alternating direction methods for parabolic systems inm-space variables. J. Assn. for Comp. Machinery9, 450–456 (1962).
—, andB. F. Jones jr.: On predictor-corrector methods for nonlinear parabolic equations. J. Soc. Ind. Appl. Math.11, 195–204 (1963).
—, andH. H. Rachford jr.: On the numerical solution of the heat conduction problems in two and three space variables. Trans. of the Amer. Math. Soc.82, 421–439 (1956).
Forsythe, G. E., andW. R. Wasow: Finite Difference Methods for Partial Differential Equations. New York: John Wiley and Sons, Inc. 1960.
Guilinger, W.: Private communication.
Konovalov, A. N.: The method of fractional steps for solving the Cauchy problem for the multi-dimensional wave equation. Dokl. Akad. Nauk147, 25–27 (1962).
Lax, P. D., andR. D. Richtmyer: Survey of stability of linear finite difference equations. Comm. Pure Appl. Math.9, 267–293 (1956).
Lees, M.: A priori estimates for the solutions of difference approximations to parabolic differential equations. Duke Math. J.27, 297–311 (1960).
—: Alternating direction and semi-explicit difference methods for parabolic differential equations. Numer. Math.3, 398–412 (1961).
—: Alternating direction methods for hyperbolic differential equations. J. Soc. Ind. Math.10, 610–616 (1960).
Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable. Amer. Math. Soc., Providence, 1949.
Peaceman, D. W., andH. H. Rachford jr.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math.3, 28–41 (1955).
Samarskii, A. A.: Locally one-dimensional difference schemes on non-uniform grids. Ž. Vyčisl. Mat. i Mat. Fiz.3, 431–466 (1963).