A fracture-resistant high-entropy alloy for cryogenic applications

American Association for the Advancement of Science (AAAS) - Tập 345 Số 6201 - Trang 1153-1158 - 2014
Bernd Gludovatz1, Anton Hohenwarter2, D. Catoor3, E. Chang1, E.P. George4,3, Robert O. Ritchie5,1
1Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Materials Physics, Montanuniversität Leoben and Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria.
3Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4Materials Sciences and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA.
5Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

Tóm tắt

A metal alloy that is stronger when cold Metal alloys normally consist of one dominant element, with others in small amounts to improve specific properties. For example, stainless steel is primarily iron with nickel and chromium but may contain trace amounts of other elements. Gludovatz et al. explored the properties of a high-entropy alloy made from equal amounts of chromium, manganese, iron, cobalt, and nickel. Not only does this alloy show excellent strength, ductility, and toughness, but these properties improve at cryogenic temperatures where most alloys change from ductile to brittle. Science , this issue p. 1153

Từ khóa


Tài liệu tham khảo

10.1016/j.msea.2003.10.257

10.1002/adem.200300567

10.1007/s11661-004-0254-x

10.1016/j.intermet.2011.01.004

10.1016/j.actamat.2013.06.018

10.1016/j.intermet.2013.03.018

10.1016/j.actamat.2013.01.042

10.1016/j.scriptamat.2012.12.002

10.1038/nmat3115

E08 Committee E1820-13 Standard Test Method for Measurement of Fracture Toughness (ASTM International 2013).

10.1063/1.881483

10.1179/imr.1997.42.2.45

M. Sokolov et al . in Effects of Radiation on Materials: 20th International Symposium S. Rosinski M. Grossbeck T. Allen A. Kumar Eds. (ASTM International West Conshohocken PA 2001) pp. 125–147.

10.1007/BF02653488

10.1007/BF02659812

Pense A. W., Stout R. D., Fracture toughness and related characteristics of the cryogenic nickel steels. Weld. Res. Counc. Bull. 205, 1–43 (1975).

10.1007/BF01567324

10.1007/BF00018499

10.1007/BF00012619

10.1007/BF02816050

10.1016/0013-7944(77)90062-5

10.1007/BF02812022

10.1016/0022-5096(69)90033-7

10.1016/0022-5096(68)90014-8

10.1016/0022-5096(68)90013-6

10.1016/0001-6160(75)90084-X

10.1016/0001-6160(89)90143-0

10.1016/j.actamat.2006.06.062

10.1126/science.1167641

10.1126/science.1159610

10.1016/j.actamat.2010.12.043

Hadfield R. A., Hadfield’s manganese steel. Science 12, 284–286 (1888).17840151

Schumann V. H., Martensitische Umwandlung in austenitischen Mangan-Kohlenstoff-Stählen. Neue Hütte 17, 605–609 (1972).

10.1016/0025-5416(77)90093-3

10.1016/0921-5093(93)90463-O

Grässel O. Frommeyer G. Derder C. Hofmann H. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels. J. Phys. IV 07 C5-383–C5-388 (1997). 10.1051/jp4:1997560

10.1016/S0749-6419(00)00015-2

10.2355/isijinternational.43.438

10.1007/s40195-012-0501-x

10.1016/0011-2275(81)90175-2

R. D. Stout S. J. Wiersma in Advances in Cryogenic Engineering Materials R. P. Reed A. F. Clark Eds. (Springer New York 1986) pp. 389–395.

10.1016/S1468-6996(03)00063-9

J. W. Sa et al . in Twenty-First IEEE/NPS Symposium on Fusion Engineering 2005 (IEEE Piscataway NJ 2005) pp. 1–4.

M. F. Ashby in Materials Selection in Mechanical Design M. F. Ashby Ed. (Butterworth-Heinemann Oxford ed. 4 2011) pp. 31–56.

10.1016/0022-5096(81)90003-X

10.1063/1.119610

10.2320/matertrans.46.1725

10.1080/09500830802438131

10.1063/1.3184792

10.1038/nmat2930