A fractional Brownian field indexed byL 2 and a varying Hurst parameter
Tài liệu tham khảo
Adler, 2007
Ayache, 2005, Multifractional processes with random exponent, Publ. Mat., 49, 459, 10.5565/PUBLMAT_49205_11
Benassi, 1997, Elliptic Gaussian random processes, Rev. Mat. Iberoam., 13, 19, 10.4171/RMI/217
H. Biermé, O. Durieu, Invariance principles for self-similar set-indexed sums of dependent random fields, Preprint, 2012, pp. 1–22.
Borell, 1976, Gaussian Radon measure on locally convex spaces, Math. Scand., 38, 265, 10.7146/math.scand.a-11634
R. Carmona, Tensor product of Gaussian measures, in: Conference on Vector Space Measures and Applications, Dublin, 1977, pp. 96–124.
Dalang, 1999, Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E’s, Electron. J. Probab., 4, 1, 10.1214/EJP.v4-43
Decreusefond, 1999, Stochastic analysis of the fractional Brownian motion, Potential Anal., 411, 177, 10.1023/A:1008634027843
Dobric, 2006, Fractional Brownian fields, duality, and martingales, vol. 51, 77
Dudley, 1973, Sample functions of the Gaussian process, Ann. Probab., 1, 66, 10.1214/aop/1176997026
Fernique, 1975, Des résultats nouveaux sur les processus gaussiens, 318
Gel’fand, 1964
Gikhman, 1969
Goodman, 1988, Characteristics of normal samples, Ann. Probab., 16, 1281, 10.1214/aop/1176991690
Gross, 1967, Abstract Wiener spaces, 31
Herbin, 2006, From N parameter fractional Brownian motions to N parameter multifractional Brownian motions, Rocky Mountain J. Math., 36, 1249, 10.1216/rmjm/1181069415
Herbin, 2009, Stochastic 2-microlocal analysis, Stochastic Process. Appl., 119, 2277, 10.1016/j.spa.2008.11.005
Herbin, 2006, A set-indexed fractional Brownian motion, J. Theoret. Probab., 19, 337, 10.1007/s10959-006-0019-0
E. Herbin, A. Richard, Local Hölder regularity of set-indexed processes, Preprint, 2012, arXiv:1203.0750v1.
E. Herbin, Y. Xiao, Sample paths properties of the set-indexed fractional Brownian motion (2014), in preparation.
Ivanoff, 2000
Jolis, 2007, On the Wiener integral with respect to the fractional Brownian motion on an interval, J. Math. Anal. Appl., 330, 1115, 10.1016/j.jmaa.2006.07.100
Jolis, 2010, Continuity of the Hurst parameter of the law of the symmetric integral with respect to the fractional Brownian motion, Stochastic Process. Appl., 120, 1651, 10.1016/j.spa.2010.05.002
Khoshnevisan, 2002
Kuelbs, 1993, Metric entropy and the small ball problem for Gaussian measures, J. Funct. Anal., 116, 133, 10.1006/jfan.1993.1107
Kuo, 1975
Leonenko, 2011, Fractional elliptic, hyperbolic and parabolic random fields, Electron. J. Probab., 16, 1134, 10.1214/EJP.v16-891
Lévy, 1965
Marcus, 2006
Monrad, 1995, Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Theory Related Fields, 101, 173, 10.1007/BF01375823
Nualart, 2006
Nualart, 1995, Quasilinear stochastic elliptic equations with reflection, Stochastic Process. Appl., 57, 73, 10.1016/0304-4149(95)00006-S
Peltier, 1995
Pitt, 1978, Local times for Gaussian vector fields, Indiana Univ. Math. J., 27, 309, 10.1512/iumj.1978.27.27024
Reed, 1980
Rudin, 1987
Ryan, 2002
Samorodnitsky, 1994
Schilling, 2012
Shao, 1995, Small ball probabilities of Gaussian fields, Probab. Theory Related Fields, 102, 511, 10.1007/BF01198847
Stroock, 2010
Takenaka, 1981, Brownian motion parametrized with metric space of constant curvature, Nagoya Math. J., 82, 131, 10.1017/S0027763000019322
Talagrand, 1995, Hausdorff measure of trajectories of multiparameter fractional Brownian motion, Ann. Probab., 23, 767, 10.1214/aop/1176988288
Xiao, 2009, Sample path properties of anisotropic Gaussian random fields, 145