A four kinetic state model of fast axonal transport: Model formulation and perturbation solution

Central European Journal of Physics - Tập 9 - Trang 146-156 - 2010
Andrey V. Kuznetsov1
1Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, USA

Tóm tắt

This paper formulates a four kinetic state model for fast axonal transport. The paper further develops the Smith-Simmons model that is based on equations governing intracellular molecular-motor-assisted transport; these equations are extended by considering four rather than three kinetic states for organelles. The model considers plus-end and minus-end-oriented organelles that can be either free (suspended in the cytosol) or attached to microtubules (MTs) (in the latter case organelles are transported by molecular motors). The paper then develops a method for uncoupling differential equations of the proposed model. A perturbation solution of this problem is obtained. The effect of transition between plus-end-oriented and minus-end oriented organelles is discussed. The accuracy of the obtained perturbation solution is evaluated by comparing the zero-order and the first-order results with a high-accuracy numerical solution.

Tài liệu tham khảo

R.V. Barkus, O. Klyachko, D. Horiuchi, B.J. Dickson, W.M. Saxton, Mol. Biol. Cell 19, 274 (2008) R.B. Vallee, G.S. Bloom, Annual Reviews in Neuroscience 14, 59 (1991) M. Linial, The secrets of a functional synapse - from computational and experimental viewpoint, BMC Bioinformatics 7, S6 (2006) E.L.F. Holzbaur, Axonal transport and neurodegenerative disease, In: P. St.George-Hyslop et al. (Eds.), Intracellular Traffic and Neurodegenerative Disorders, (Springer, Berlin, 2009) 27 L.S.B. Goldstein, Z. Yang, Annual Reviews in Neuroscience 23, 39 (2000) V. Muresan, J. Neurocytol. 29, 799 (2000) P.J. Hollenbeck, W.M. Saxton, J. Cell Sci. 118, 5411 (2005) D.D. Hurd, W.M. Saxton, Genetics 144, 1075 (1996) M.A. Martin et al., Mol. Biol. Cell 10, 3717 (1999) L.S.B. Goldstein, Proc. Nat. Acad. Sci. U.S.A. 98, 6999 (2001) G.B. Stokin et al., Science 307, 1282 (2005) K.E. Miller, M.P. Sheetz, J. Cell Sci. 117, 2791 (2004) A.D. Pilling, D. Horiuchi, C.M. Lively, W.M. Saxton, Mol. Biol. Cell 17, 2057 (2006) D.A. Smith, R.M. Simmons, Biophys. J. 80, 45 (2001) P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) A.V. Kuznetsov, K. Hooman, Int. J. Heat Mass Tran. 51, 5695 (2008) A.V. Kuznetsov, Int. Commun. Heat Mass 35, 881 (2008) A.V. Kuznetsov, A.A. Avramenko, Int. Commun. Heat Mass 36, 1 (2009) A.V. Kuznetsov, A.A. Avramenko, Math. Biosci. 218, 142 (2009) B. Alberts et al., Molecular Biology of the Cell, 5th ed. (Garland Science, New York, 2008) J. Beeg et al., Biophys. J. 94, 532 (2008) C. Leduc et al., Proc. Natl. Acad. Sci. U.S.A. 101, 17096 (2004) M.J. Schnitzer, K. Visscher, S.M. Block, Nat. Cell Biol. 2, 718 (2000) R.D. Vale et al., Nature 380, 451 (1996) N.J. Carter, R.A. Cross, Nature 435, 308 (2005) S.J. King, T.A. Schroer, Nat. Cell Biol. 2, 20 (2000) S.L. Reck-Peterson et al., Cell 126, 335 (2006) S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Proc. Natl. Acad. Sci. U.S.A. 103, 5741 (2006) C. Kural et al., Science 308, 1469 (2005) D.B. Hill, M.J. Plaza, K. Bonin, G. Holzwarth, Eur. Biophys. J. 33, 623 (2004)