A detailed study of a cylinder activation concept by efficiency loss analysis and 1D simulation

Thomas Buitkamp1, Michael Günthner1, Florian Müller1, Tim Beutler1
1Lehrstuhl für Antriebe in der Fahrzeugtechnik (LAF), Fachbereich Maschinenbau und Verfahrenstechnik, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany

Tóm tắt

AbstractCylinder deactivation is a well-known measure for reducing fuel consumption, especially when applied to gasoline engines. Mostly, such systems are designed to deactivate half of the number of cylinders of the engine. In this study, a new concept is investigated for deactivating only one out of four cylinders of a commercial vehicle diesel engine (“3/4-cylinder concept”). For this purpose, cylinders 2–4 of the engine are operated in “real” 3-cylinder mode, thus with the firing order and ignition distance of a regular 3-cylinder engine, while the first cylinder is only activated near full load, running in parallel to the fourth cylinder. This concept was integrated into a test engine and evaluated on an engine test bench. As the investigations revealed significant improvements for the low-to-medium load region as well as disadvantages for high load, an extensive numerical analysis was carried out based on the experimental results. This included both 1D simulation runs and a detailed cylinder-specific efficiency loss analysis. Based on the results of this analysis, further steps for optimizing the concept were derived and studied by numerical calculations. As a result, it can be concluded that the 3/4-cylinder concept may provide significant improvements of real-world fuel economy when integrated as a drive unit into a tractor.

Từ khóa


Tài liệu tham khảo

Fortnagel, M., Schommers, J., Clauss, R., Glück, R., et al.: Der neue Mercedes-Benz 12-zylinder-motor mit zylinderabschaltung. MTZ Motortechnische Zeitschrift 61, 280 (2000)

Neugärtner, J., Scholz, A., Schurr, A., Günthner, M. et al.: Load point shifting for Diesel engines – potentials for passenger car and truck engine applications. In: Liebl J., Beidl C. (eds) Internationaler Motorenkongress 2017. Proceedings, pp. 43–61. Springer Vieweg, Wiesbaden (2017). DOI: 10.1007/978-3-658-17109-4_6

Gosala, D.B., Shaver, G.M., McCarthy, J.E., Lutz, T.P.: Fuel-efficient thermal management in diesel engines via valvetrain-enabled cylinder ventilation strategies. Int. J. Engine Res. (2019). https://doi.org/10.1177/1468087419867247

Abthoff, J., Schuster, H., Wollenhaupt, G.: Ein Motorenkonzept mit Zylinderabschaltung und seine Verbrauchsreduzierung (in German). MTZ Motortechnische Zeitschrift 41 (1980)

Middendorf, H., Theobald, J., Lang, L., Hartel, K.: The 1.4l TSI gasoline engine with cylinder deactivation. MTZ Worldw 73, 4–9 (2012). https://doi.org/10.1365/s38313-012-0147-0

Eichler, F., Gindele, J., Hart, M., Ramsteiner, T. et al.: The New AMG 5.5l V8 naturally aspirated engine with cylinder shut-off. In: Proceedings of the 20th Aachen Colloquium Automobile and Engine Technology (2011)

Allen, C.M., Gosala, D.B., Shaver, G.M., McCarthy, J.: Comparative study of diesel engine cylinder deactivation transition strategies. Int. J. Engine Res. 20(5), 570–580 (2019). https://doi.org/10.1177/1468087418768117

Küpper, K., Linsel, J., Pingen, B., Weber, C.: Cylinder deactivation for three-cylinder engines. MTZ Worldw 77, 46–51 (2016). https://doi.org/10.1007/s38313-016-0132-0

Parker, M.C., Jiang, C., Butcher, D., Spencer, A., et al.: Impact and observations of cylinder deactivation and reactivation in a downsized gasoline turbocharged direct injection engine. Int. J. Engine Res. (2019). https://doi.org/10.1177/1468087419882817

Flierl, R., Hannibal, W., Schurr, A., Neugärtner, J.: Turbocharged three-cylinder engine with activation of a cylinder. MTZ Worldw 75, 22–27 (2014). https://doi.org/10.1007/s38313-014-0158-0

Buitkamp T.: Potenziale eines Dieselmotors mit variablem Ventiltrieb und Zylinderzuschaltung in einem Traktor (in German). Ph.D. Thesis, TU Berlin (2019)

Fujiwara, M., Kumagai, K., Segawa, M., Sato, R. et al.: Development of a 6-cylinder gasoline engine with new variable cylinder management technology. SAE Technical Paper 2008-01-0610 (2008). DOI: 10.4271/2008-01-0610

Faust, H., Scheidt, M.: Potentials and constraints of cylinder deactivation in the powertrain. MTZ World 77, 72–77 (2016). https://doi.org/10.1007/s38313-016-0046-x

Schamel, A., Scheidt, M., Weber, C., Faust, H.: Is cylinder deactivation a viable option for a downsized 3-cylinder engine? In: Proceedings of the 36th International Vienna Engine Symposium, Vienna (2015)

Serrano, J., Routledge, G., Lo, N., Shost, M., et al.: Methods of evaluating and mitigating NVH when operating an engine in dynamic skip fire. SAE Int. J. Engines 7(3), 1489–1501 (2014). https://doi.org/10.4271/2014-01-1675

Eisazadeh-Far, K., Younkins, M.: Fuel Economy gains through dynamic-skip-fire in spark ignition engines. SAE Technical Paper 2016-01-0672 (2016). DOI: 10.4271/2016-01-0672

Gosala, D.B., Allen, C.M., Shaver, G.M., Farrell, L., et al.: Dynamic cylinder activation in diesel engines. Int. J. Engine Res. 20(8–9), 849–861 (2019). https://doi.org/10.1177/1468087418779937

Zammit, J.-P., McGhee, M.J., Shayler, P.J., Pegg, I.: The influence of cylinder deactivation on the emissions and fuel economy of a four-cylinder direct-injection diesel engine. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 228(2), 206–217 (2014). https://doi.org/10.1177/0954407013506182

Mo, H., Huang, Y., Mao, X., Zhuo, B.: The effect of cylinder deactivation on the performance of a diesel engine. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 228(2), 199–205 (2014). https://doi.org/10.1177/0954407013503627

Pillai, S., LoRusso, J., Van Benschoten, M.: Analytical and Experimental evaluation of cylinder deactivation on a diesel engine. SAE Technical Paper 2015-01-2809 (2015). DOI: 10.4271/2015-01-2809

Vos, K.R., Shaver, G.M., Joshi, M.C., Ramesh, A.K., et al.: Strategies for using valvetrain flexibility instead of exhaust manifold pressure modulation for diesel engine gas exchange and thermal management control. Int. J. Engine Res. (2019). https://doi.org/10.1177/1468087419880634

Schurr, A., Günthner, M., Flierl, R., Woike, D. et al.: Investigation of a cylinder activation concept for a turbocharged direct-injection gasoline engine. SAE Technical Paper 2018-01-1713 (2018). DOI: 10.4271/2018-01-1713

Thees, M., Buitkamp, T., Günthner, M., Pickel, P.: High efficiency diesel engine concept with variable valve train and cylinder deactivation for integration into a tractor. In: Proceedings of the ASME 2019 Internal Combustion Engine Division Fall Technical Conference, Chicago (2019). DOI: 10.1115/ICEF2019-7177

Technologies, G.: GT-SUITE engine performance application manual: version 2016. Gamma Technologies, Westmont (2016)

Pischinger, R., Klell, M., Sams, T.: Thermodynamik der Verbrennungskraftmaschine (in German). Springer (2009). DOI: 10.1007/978-3-211-99277-7

Witt, A.: Analyse der thermodynamischen Verluste eines Ottomotors unter den Randbedingungen variabler Steuerzeiten" (in German). Ph.D. Thesis, TU Graz (1999)

Hohenberg, G.: Experimentelle Erfassung der Wandwärme von Kolbenmotoren (in German). Habilitation Thesis, TU Graz (1980)

Monschein, W., Grabner, P., Eichlseder, H., Quasthoff, M. et al.: Untersuchungen zur Zylinderabschaltung an einem Dieselmotor für den Einsatz in mobilen Arbeitsmaschinen (in German). In: Bargende M., Reuss H., Wiedemann J. (eds), 15th International Stuttgart Symposium. Proceedings, pp. 353–368. Springer Vieweg, Wiesbaden (2015). DOI: 10.1007/978-3-658-08844-6_24

Neugärtner, J.: Innere Lastpunktverschiebung bei Dieselmotoren (in German). Ph.D. Thesis, TU Kaiserslautern (2018)