A detailed study of a cylinder activation concept by efficiency loss analysis and 1D simulation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fortnagel, M., Schommers, J., Clauss, R., Glück, R., et al.: Der neue Mercedes-Benz 12-zylinder-motor mit zylinderabschaltung. MTZ Motortechnische Zeitschrift 61, 280 (2000)
Neugärtner, J., Scholz, A., Schurr, A., Günthner, M. et al.: Load point shifting for Diesel engines – potentials for passenger car and truck engine applications. In: Liebl J., Beidl C. (eds) Internationaler Motorenkongress 2017. Proceedings, pp. 43–61. Springer Vieweg, Wiesbaden (2017). DOI: 10.1007/978-3-658-17109-4_6
Gosala, D.B., Shaver, G.M., McCarthy, J.E., Lutz, T.P.: Fuel-efficient thermal management in diesel engines via valvetrain-enabled cylinder ventilation strategies. Int. J. Engine Res. (2019). https://doi.org/10.1177/1468087419867247
Abthoff, J., Schuster, H., Wollenhaupt, G.: Ein Motorenkonzept mit Zylinderabschaltung und seine Verbrauchsreduzierung (in German). MTZ Motortechnische Zeitschrift 41 (1980)
Middendorf, H., Theobald, J., Lang, L., Hartel, K.: The 1.4l TSI gasoline engine with cylinder deactivation. MTZ Worldw 73, 4–9 (2012). https://doi.org/10.1365/s38313-012-0147-0
Eichler, F., Gindele, J., Hart, M., Ramsteiner, T. et al.: The New AMG 5.5l V8 naturally aspirated engine with cylinder shut-off. In: Proceedings of the 20th Aachen Colloquium Automobile and Engine Technology (2011)
Allen, C.M., Gosala, D.B., Shaver, G.M., McCarthy, J.: Comparative study of diesel engine cylinder deactivation transition strategies. Int. J. Engine Res. 20(5), 570–580 (2019). https://doi.org/10.1177/1468087418768117
Küpper, K., Linsel, J., Pingen, B., Weber, C.: Cylinder deactivation for three-cylinder engines. MTZ Worldw 77, 46–51 (2016). https://doi.org/10.1007/s38313-016-0132-0
Parker, M.C., Jiang, C., Butcher, D., Spencer, A., et al.: Impact and observations of cylinder deactivation and reactivation in a downsized gasoline turbocharged direct injection engine. Int. J. Engine Res. (2019). https://doi.org/10.1177/1468087419882817
Flierl, R., Hannibal, W., Schurr, A., Neugärtner, J.: Turbocharged three-cylinder engine with activation of a cylinder. MTZ Worldw 75, 22–27 (2014). https://doi.org/10.1007/s38313-014-0158-0
Buitkamp T.: Potenziale eines Dieselmotors mit variablem Ventiltrieb und Zylinderzuschaltung in einem Traktor (in German). Ph.D. Thesis, TU Berlin (2019)
Fujiwara, M., Kumagai, K., Segawa, M., Sato, R. et al.: Development of a 6-cylinder gasoline engine with new variable cylinder management technology. SAE Technical Paper 2008-01-0610 (2008). DOI: 10.4271/2008-01-0610
Faust, H., Scheidt, M.: Potentials and constraints of cylinder deactivation in the powertrain. MTZ World 77, 72–77 (2016). https://doi.org/10.1007/s38313-016-0046-x
Schamel, A., Scheidt, M., Weber, C., Faust, H.: Is cylinder deactivation a viable option for a downsized 3-cylinder engine? In: Proceedings of the 36th International Vienna Engine Symposium, Vienna (2015)
Serrano, J., Routledge, G., Lo, N., Shost, M., et al.: Methods of evaluating and mitigating NVH when operating an engine in dynamic skip fire. SAE Int. J. Engines 7(3), 1489–1501 (2014). https://doi.org/10.4271/2014-01-1675
Eisazadeh-Far, K., Younkins, M.: Fuel Economy gains through dynamic-skip-fire in spark ignition engines. SAE Technical Paper 2016-01-0672 (2016). DOI: 10.4271/2016-01-0672
Gosala, D.B., Allen, C.M., Shaver, G.M., Farrell, L., et al.: Dynamic cylinder activation in diesel engines. Int. J. Engine Res. 20(8–9), 849–861 (2019). https://doi.org/10.1177/1468087418779937
Zammit, J.-P., McGhee, M.J., Shayler, P.J., Pegg, I.: The influence of cylinder deactivation on the emissions and fuel economy of a four-cylinder direct-injection diesel engine. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 228(2), 206–217 (2014). https://doi.org/10.1177/0954407013506182
Mo, H., Huang, Y., Mao, X., Zhuo, B.: The effect of cylinder deactivation on the performance of a diesel engine. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 228(2), 199–205 (2014). https://doi.org/10.1177/0954407013503627
Pillai, S., LoRusso, J., Van Benschoten, M.: Analytical and Experimental evaluation of cylinder deactivation on a diesel engine. SAE Technical Paper 2015-01-2809 (2015). DOI: 10.4271/2015-01-2809
Vos, K.R., Shaver, G.M., Joshi, M.C., Ramesh, A.K., et al.: Strategies for using valvetrain flexibility instead of exhaust manifold pressure modulation for diesel engine gas exchange and thermal management control. Int. J. Engine Res. (2019). https://doi.org/10.1177/1468087419880634
Schurr, A., Günthner, M., Flierl, R., Woike, D. et al.: Investigation of a cylinder activation concept for a turbocharged direct-injection gasoline engine. SAE Technical Paper 2018-01-1713 (2018). DOI: 10.4271/2018-01-1713
Thees, M., Buitkamp, T., Günthner, M., Pickel, P.: High efficiency diesel engine concept with variable valve train and cylinder deactivation for integration into a tractor. In: Proceedings of the ASME 2019 Internal Combustion Engine Division Fall Technical Conference, Chicago (2019). DOI: 10.1115/ICEF2019-7177
Technologies, G.: GT-SUITE engine performance application manual: version 2016. Gamma Technologies, Westmont (2016)
Pischinger, R., Klell, M., Sams, T.: Thermodynamik der Verbrennungskraftmaschine (in German). Springer (2009). DOI: 10.1007/978-3-211-99277-7
Witt, A.: Analyse der thermodynamischen Verluste eines Ottomotors unter den Randbedingungen variabler Steuerzeiten" (in German). Ph.D. Thesis, TU Graz (1999)
Hohenberg, G.: Experimentelle Erfassung der Wandwärme von Kolbenmotoren (in German). Habilitation Thesis, TU Graz (1980)
Monschein, W., Grabner, P., Eichlseder, H., Quasthoff, M. et al.: Untersuchungen zur Zylinderabschaltung an einem Dieselmotor für den Einsatz in mobilen Arbeitsmaschinen (in German). In: Bargende M., Reuss H., Wiedemann J. (eds), 15th International Stuttgart Symposium. Proceedings, pp. 353–368. Springer Vieweg, Wiesbaden (2015). DOI: 10.1007/978-3-658-08844-6_24
Neugärtner, J.: Innere Lastpunktverschiebung bei Dieselmotoren (in German). Ph.D. Thesis, TU Kaiserslautern (2018)