A deep error correction network for compressed sensing MRI
Tóm tắt
Tài liệu tham khảo
Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006; 52(4):1289–306.
Ma S, Yin W, Zhang Y, Chakraborty A. An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE: 2008. p. 1–8. https://doi.org/10.1109/cvpr.2008.4587391.
Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, Liang D. Accelerating magnetic resonance imaging via deep learning. In: IEEE International Symposium on Biomedical Imaging. IEEE: 2016. p. 514–7. https://doi.org/10.1109/isbi.2016.7493320.
Lee D., Yoo J., Ye J. C.Deep residual learning for compressed sensing MRI. In: IEEE International Symposium on Biomedical Imaging. IEEE: 2017. p. 15–8. https://doi.org/10.1109/isbi.2017.7950457.
Schlemper J, Caballero J, Hajnal JV, Price A, Rueckert D. A deep cascade of convolutional neural networks for MR image reconstruction. In: International Conference on Information Processing in Medical Imaging. Springer: 2017. p. 647–58. https://doi.org/10.1007/978-3-319-59050-9_51.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE: 2016. p. 770–8. https://doi.org/10.1109/cvpr.2016.90.
He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Computer Vision ? ECCV 2016. Springer: 2016. p. 630–45. https://doi.org/10.1007/978-3-319-46493-0_38.