A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling
Tóm tắt
Abstract. In order to use the global available eddy-covariance (EC) flux dataset and remote-sensing measurements to provide estimates of gross primary productivity (GPP) at landscape (101–102 km2), regional (103–106 km2) and global land surface scales, we developed a satellite-based GPP algorithm using LANDSAT data and an upscaling framework. The satellite-based GPP algorithm uses two improved vegetation indices (Enhanced Vegetation Index – EVI, Land Surface Water Index – LSWI). The upscalling framework involves flux footprint climatology modelling and data-model fusion. This approach was first applied to an evergreen coniferous stand in the subtropical monsoon climatic zone of south China. The EC measurements at Qian Yan Zhou tower site (26°44´48" N, 115°04´13" E), which belongs to the China flux network and the LANDSAT and MODIS imagery data for this region in 2004 were used in this study. A consecutive series of LANDSAT-like images of the surface reflectance at an 8-day interval were predicted by blending the LANDSAT and MODIS images using an existing algorithm (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model). The seasonal dynamics of GPP were then predicted by the satellite-based algorithm. MODIS products explained 60% of observed variations of GPP and underestimated the measured annual GPP (= 1879 g C m−2) by 25–30%; while the satellite-based algorithm with default static parameters explained 88% of observed variations of GPP but overestimated GPP during the growing seasonal by about 20–25%. The optimization of the satellite-based algorithm using a data-model fusion technique with the assistance of EC flux tower footprint modelling reduced the biases in daily GPP estimations from about 2.24 g C m−2 day−1 (non-optimized, ~43.5% of mean measured daily value) to 1.18 g C m−2 day−1 (optimized, ~22.9% of mean measured daily value). The remotely sensed GPP using the optimized algorithm can explain 92% of the seasonal variations of EC observed GPP. These results demonstrated the potential combination of the satellite-based algorithm, flux footprint modelling and data-model fusion for improving the accuracy of landscape/regional GPP estimation, a key component for the study of the carbon cycle.
Từ khóa
Tài liệu tham khảo
Amiro, B. D., Barr, A. G., and Black, T. A.: Carbon, energy and water fluxes at mature disturbed forest sites, Saskatchewan, Canada, Agr. Forest Meteorol., 136, 237–251, 2006.
Baldocchi, D. D.: Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, 2008.
Barford, C. C., Wofsy, S. C., and Goulden, M. L.: Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest, Science, 294, 1688–1691, 2001.
Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S. O., and Tucker, C. J.: Biospheric primary production during an ENSO transition, Science, 291, 2594–2597, 2001.
Buermann, W., Dong, J., Zeng, X., Myneni, R. B., and Dickinson, R. E.: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations, J. Climate, 14, 3536–3550, 2001.
Chen, B., Black, A., Coops, N. C., Hilker, T., Trofymow, T., Nesic, Z., and Morgenstern, K.: Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements, Bound.-Lay. Meteorol., 130, 137–167, https://doi.org/10.1007/s10546-008-9339-1, 2009a.
Chen, B., Black, A., Coops, N. C., Jassal, R., and Nesic, Z.: Seasonal controls on interannual variability in carbon dioxide exchange of a Pacific Northwest Douglas-fir forest, 1997–2006, Global Change Biol., 15, 1962–1981, https://doi.org/10.1111/j.1365-2486.2008.01832.x, 2009b.
Chen, B., Chen, J. M., Mo, G., Yuen, C.-W., Margolis, H., Higuchi, K., and Chan, D.: Modeling and scaling coupled energy, water, and carbon fluxes based on remote sensing: An application to Canada's landmass, J. Hydrometeorol., 8, 123–143, 2007.
Chen, B., Chen, J. M., Mo, G., Black, T. A., and Worthy, D. E. J.: Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration, Global Biogeochem. Cy., 22, GB2012, https://doi.org/10.1029/2007GB003024, 2008.
Coops, N. C., Black, T. A., Jassal, R. S., Trofymow, J. A., and Morgenstern, K.: Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand, Remote Sens. Environ., 107, 385–401, 2007.
Cosh, M. H. and Brutsaert, W.: Microscale structural aspects of vegetation density variability, J. Hydrol., 276, 128–136, 2003.
Diego, S., Peylin, P., Viovy, N., and Ciais, P.: Optimizing a process-based model with eddy-covariance flux measurements: A pine forest in southern France, Global Biogeochem. Cy., 21, GB2013, https://doi.org/1029/2006GB002834, 2007.
Drolet, G. G., Middleton, E. M., Huemmrich, K. F., Hall, F. G., Amiro, B. D., and Barr, A. G.: Regional mapping of gross light-use efficiency using MODIS spectral indices, Remote., Sens. Environ., 112, 3064–3078, 2008.
Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap, Chapman & Hall/CRC, Boca Raton, 1993.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolmani, H., Granier, A., Gross, P., Gru\\"{ }nwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agr. Forest Meteorol., 107, 43–69, 2001.
Field, C. B., Randerson, J. T., and Malmstrom, C. M.: Global net primary production-combining ecology and remote sensing, Remote Sens. Environ., 51, 74–88, 1995.
Foken, T. and Leclerc, M. Y.: Methods and limitations in validation of footprint models, Agr. Forest Meteorol., 127, 223–234, 2004.
Gao, F., Masek, J., Schwaller, M., and Hall, H: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance, IEEE T. Geosci. Remote, 44, 2207–2218, 2006.
Gobron, N., Pinty, B., Verstraete, M., and Govaerts, Y.: The MERIS Global Vegetation Index (MGVI): Description and preliminary application, Int. J. Remote Sens., 20, 1917–1927, 1999.
Gökede, M., Rebmann, C., and Foken, T.: A combination of quality assessment tools for eddy co-variance measurements with footprint modelling for the characterisation of complex sites, Agric. For. Meteorol., 127, 175–188, 2004.
Govaerts, Y. M., Verstraete, M. M., Pinty, B., and Gobron, N.: Designing optimal spectral indices: A feasibility and proof of concept study, Int. J. Remote Sens., 20, 1853–1873, 1999.
Griffis, T. J., Black, T. A., and Morgenstern, K.: Ecophysiological controls on the carbon balances of three southern boreal forests, Agr. Forest Meteorol., 117, 53–71, 2003.
Hall, F. G., Hilker, T., Coops, N. C., Lyapustin, A. Huemmrich, F., Middleton, E., Margolis, H., Drolet, G., and Black, T.: Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction, Remote Sens. Environ., 112, 3201–3211, 2008.
Hall, F., Sellers, P., Strebel, D., Kanemasu, E., Kelly, R., Blad, B., Markham, B., Wang, J., ans Huemmrich, F.: Satellite remote sensing of surface energy and mass balance results: Results from FIFE, Remote Sens. Environ., 35, 187–199,1991.
Hilker, T., Coops, N. C., Hall, F. G., Black, T. A., Chen, B., Krishnan, P., Wulder, M. A., Sellers, P. J., Middleton, E. M., and Huemmrich, K. F.: A modelling approach for upscaling gross ecosystem production to the landscape scale using remote sensing data, J. Geophys. Res., 113, G03006, https://doi.org/10.1029/2007JG000666, 2008.
Hollinger, D. Y., Goltz, S. M., and Davidson, E. A.: Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest, Global Change Biol., 5, 891–902, 1999.
Hollinger, D. Y. and Richardson, A. D.: Uncertainty in eddy covariance measurements and its application to physiological models, Tree Physiol., 25, 873–885, 2005.
Horst, T. W. and Weil, J. C.: Footprint estimation for scalar flux measurements in the atmospheric surface layer, Bound.-Lay. Meteorol., 59, 279–296, 1992.
Huang, M., Ji, J., Li, K., Liu, Y., Yang, F., and Tao, B.: The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China, Tellus B, 59, 439–448, 2007.
Huete, A. R., Liu, H. Q., Batchily, K., and van Leeuwen, W.: A comparison of vegetation indices over a global set of TM images for EOS-MODIS, Remote Sens. Environ., 59, 440–451, 1997.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Ju, J. C. and Roy, D. P.: The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally, Remote Sens. Environ., 112, 1196–1211, 2007.
Kalvelage, T. and Willems, J.: Supporting users through integrated retrieval, processing, and distribution systems at the Land Processes Distributed Active Archive Center, Acta Astronaut., 56, 681–687, 2005.
Kljun, N., Kormann, R., and Rotach, M. W.: Comparison of the Langrangian footprint model LPDM-B with an analytical footprint model, Bound.-Lay. Meteorol., 106, 349–355, 2003.
Law, B. E., Waring, R. H., and Anthoni, P. M.: Measurements of gross and net ecosystem, productivity and water vapour exchange of a Pinus ponderosa ecosystem, and evaluation of two generalized models, Global Change Biol., 6, 155–168, 2000.
Lee, X., Fuentes, J. D., and Staebler, R. M.: Long-term observation of the atmospheric exchange of CO2 with a temperature deciduous forest. J. Geophys. Res., 104, 15975–15984, 1999.
Levy, P. E., Grelle, A., Lindroth, A., Mölder, M., Jarvis, P. G., Kruijt, B., and Moncrieff, J. B.: Regional-scale CO2 fluxes over central Sweden by a boundary layer budget method, Agr. Forest Meteorol., 98–99, 169–180, 1999.
Li, Z., Yu, G., Xiao, X., Li, Y., Zhao, C., Ren, C., Zhang, L., and Fu, Y.: Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data, Remote Sens. Environ., 107, 510–519, 2007.
Liu, Y., Yu, G., Wen, X., Wang, Y., Song, X., Li, J., Sun, X., Yang, F., Chen, Y., and Liu, Q.: Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem, Sci. China Ser. D, 49(Supp.II), 99–109, 2006.
Monteith, J. L.: Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747–766, 1972.
Papale, D. and Valentini, R.: A new assesment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol., 9, 525–535, 2003.
Prince, S. D. and Goward, S. N.: Global primary production: A remote sensing approach, J. Biogeogr., 22, 815–835, 1995.
Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., Grace, A. L., Moore, B., and Vorosmarty, C. J.: Potential net primary productivity in South-America – application of a global-model, Ecol. Appl., 1, 399–429, 1991.
Ranson, K. J., Kovacs, K., Sun, G., and Kharuk, V. I.: Disturbance recognition in the boreal forest using radar and Landsat-7, Can. J. Remote Sens., 29, 271–285, 2003.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havrámkova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucc, G., Meyers, T., Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, A. E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biol., 11, 1424–1439, 2005.
Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Dore, S., and Valentini, R.: Ecosystem respiration in two Mediterranean veergreen Holm Oak forests: drought effects and decomposition dynamics, Funct. Ecol., 16, 27–39, 2002.
Richardson, A. D., Hollinger, D., Burba, Y., George, G., Davis, K., Flanagan, J., Lawrence, B., Katul, G., Munger, G., William, J., Ricciuto, D., Stoy, M., Paul, C., Suyker, A., Verma, E., Shashi, B., and Wofsy, S. C.: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agr. Forest Meteorol., 136, 1–18, 2006.
Roy, P., Junchang, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., and Lindquist, E.: Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data, Remote Sens. Environ., 112, 3112–3130, 2008.
Ruimy, A., Jarvis, P. G., Baldocchi, D. D., and Saugier, B.: CO2 fluxes over plant canopies and solar radiation: A review, Adv. Ecol. Res., 26,, 1–68, 1995.
Ruimy, A., Kergoat, L., and Bondeau, A.: Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency, Global Change Biol., 5, 56–64, 1999.
Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., and Hibbard, K. A.: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modelling and EOS satellite data, Remote Sens. Environ., 70, 108–127, 1999.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Jolly, M.: A continuous satellite-derived measure of global terrestrial primary productivity: Future science and applications, Bioscience, 56, 547–560, 2004.
Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global terrestrial gross and net primary productivity from the Earth Observing System, in: Methods in Ecosystem Science, edited by: Sala, O. E., Jackson, R. B., and Mooney, H. A., Springer, New York, 44–57, 2000.
Shen, S. and Leclerc, M. Y.: How large must surface layer inhomogeneities be before they influence the convective boundary layer structure? A case study, Q. J. Roy. Meteor. Soc., 121, 1209–1228, 1995.
Sogachev, A., Rannik, U., and Vesala, T.: Flux footprints over complex terrain covered by heterogeneous forest, Agr. Forest Meteorol., 127, 142–158, 2004.
Stoy, P. C., Katul, G., and Siqueira, G.: Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US, Global Change Biol., 12, 2115–2135, 2006.
Tarantola, A.: Inverse Problem: Theory Methods for Data Fitting and Parameter Estimation, Elsevier, New York, 1987.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Urbanski, S., Barford, C., Wofsy, S.: Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest, J. Geophys. Res., 112, G02020, https://doi.org/10.1029/2006JG000293, 2007.
Wen, X., Yu, G., Sun, X., Li, Q., Liu, Y., Zhang, L., Ren, C., Fu, Y., and Li, Z.: Soil moisture effect on the temperature dependence ofecosystem respiration in a subtropical Pinus plantation of southeastern China, Agr. Forest Meteorol., 137, 166–175, 2006.
Wu, J. D., Wang, D., and Bauer, M. E.: Image-based atmospheric correction ofQuickBird imagery of Minnesota cropland, Remote Sens. Environ., 99, 315–325, 2005.
Xiao, X. M., Zhang, Q. Y., Hollinger, D., Aber, J., and Moore, B.: Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data, Ecol. Appl., 15, 954–969, 2005.
Xiao, X., Boles, S., Liu, J. Y., Zhuang, D. F., and Liu, M. L.: Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data, Remote Sens. Environ., 82, 335–348, 2002.
Xiao, X., Hollinger, D., Aber, J. D., Goltz, M., Davidson, E., Zhang, Q., and Moore III, B.: Satellite-based Modeling of Gross Primary Production in an Evergreen Needle leaf Forest, Remote Sens. Environ., 89, 519–534, 2004.
Zhang, L. M., Yu, G. R., Sun, X. M., Wen, X. F., Ren, C. Y., Fu, Y. L., Li, Q. K., Li, Z. Q., Liu, Y. F., Xin, D., Guan, D. X., and Yan, J. H.: Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate ($P_{\\rm max}$) of different forest ecosystems in China, Agr. Forest Meteorol., 137, 176–187, 2006.