A criterion of normality based on a single holomorphic function

Springer Science and Business Media LLC - Tập 27 - Trang 141-154 - 2010
Xiao Jun Liu1, Shahar Nevo2
1Department of Mathematics, University of Shanghai for Science and Technology, Shanghai, P. R. China
2Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel

Tóm tắt

Let F be a family of functions holomorphic on a domain D ⊂ ℂ Let k ≥ 2 be an integer and let h be a holomorphic function on D, all of whose zeros have multiplicity at most k −1, such that h(z) has no common zeros with any f ∈ F. Assume also that the following two conditions hold for every f ∈ F: (a) f(z) = 0 ⇒ f′(z) = h(z); and (b) f′(z) = h(z) ⇒ |f (k)(z)| ≤ c, where c is a constant. Then F is normal on D.

Tài liệu tham khảo

Pang, X. C., Zalcman, L.: Normal families and shared values. Bull. London Math. Soc., 32, 325–331 (2000) Zhang, G. M., Sun, W., Pang, X. C.: On the normality of certain king of holomorphic functions. Chin. Ann. Math. Ser. A, 26(6), 765–770 (2005) Chang, J. M., Fang, M. L., Zalcman, L.: Normal families of holomorphic functions. Illinois Math. J., 48(1), 319–337 (2004) Lucas, F.: Géométrie des polynômes. J. École Polytech., 46(1), 1–33 (1879) Marden, M.: Geometry of Polynomials, American Mathematical Society, Providence, Rhode Island, 1966 Pang, X. C.: Bloch’s principle and normal criterion. Sci. China Ser. A, 32, 782–791 (1989) Zalcman, L.: Normal families: new perspectives. Bull. Amer. Math. Soc. (N.S.), 35, 215–230 (1998) Nevo, S.: Applications of Zalcman’s lemma to Q m-normal families. Analysis, 21, 289–325 (2001) Nevo, S., Pang, X. C., Zalcman, L.: Quasinormality and meromorphic functions with multiple zeros. J. Anal. Math., 101, 1–23 (2007) Zalcman, L.: A heuristic principle in complex function theory. Amer. Math. Monthly, 82, 813–817 (1975) Clunie, J., Hayman, W. K.: The spherical derivative of integral and meromorphic functions. Comment Math. Helvet., 40, 117–148 (1966) Lehto, O.: The spherical derivative of a meromorphic function in the neighborhood of an isolated singularity. Comment Math. Helvet., 33, 196–205 (1959) Pang, X. C., Zalcman, L.: Normal families of meromorphic functions with multiple zeros and poles. Israel J. Math., 136, 1–9 (2003)