A cost benefit model for high capacity transport in a comprehensive line-haul network

David Lindqvist1, Marwan Salman1, Rickard Bergqvist1
1Industrial and Financial Management and Logistics, Department of Business Administration School of Business, Economics and Law at University of Gothenburg, P.O. Box 610, SE 405 30, Göteborg, Sweden

Tóm tắt

Abstract The objective of the paper is to analyse the potential of introducing High Capacity Transport (HCT) within a comprehensive line-haul network. Barriers and enablers have been identified, and a cost benefit model has been developed. The model considers environmental performance, socio-economic costs and operational costs and has been applied to a Swedish context and case study. The findings reveal that HCT can contribute to the development of road transportation in the perspectives of energy consumption and emission releases. It can further strengthen the trade and competitiveness of Swedish hauliers, as the introduction can provide a more cost-efficient system for all actors, including the transporter. However, the potential is largest when longer vehicles are meticulously and scrupulously introduced on a designated network alone.

Từ khóa


Tài liệu tham khảo

Pålsson, H., Winslott Hiselius, L., Wandel, S., Khan, J., & Adell, E. (2017). Longer and heavier road freight vehicles in Sweden: Effects on tonne-and vehicle-kilometres, CO2 and socio-economics. International Journal of Physical Distribution and Logistics Management, 47(7), 603–622.

Swedish Environmental Protection Agency, (2018a), National Inventory Report Sweden, greenhouse gas emission inventories 1990–2016. United Nations Framework Convention on Climate Change and the Kyoto Protocol.

Government Offices of Sweden. (2017). The climate policy framework https://www.government.se/articles/2017/06/the-climate-policy-framework/ [Accessed 27 Feb 2019].

Swedish Environmental Protection Agency. (2018b). Fördjupad analys av svensk klimatstatistik 2018, Swedish Environmental Protection Agency, Rapport 6848.

Meers, D., van Lier, T., & Macharis, C. (2018). Longer and heavier vehicles in Belgium: A threat for the intermodal sector? Transportation Research Part D: Transport and Environment, 61, 459–470.

Knight, I., Newton, W., Barlow, T., McCrae, I., Dodd, M., Couper, G., … Ramdas, V. (2008). Longer and/or longer and heavier goods vehicles (LHVs): A study of the likely effects if permitted in the UK (no. PPR 285). UK: TRL.

Åsman, P., & Asp, T. (2018). Annual report of high capacity transport 2017. Gothenburg: The Swedish Transport Administration.

Christidis, P., & Leduc, G. (2009). Longer and heavier vehicles for freight transport, (pp. 1–40). Luxembourg: JRC European Commission.

Vierth, I., Berell, H., McDaniel, J., Haraldsson, M., Hammarström, U., Yahya, M. R., … Björketun, U. (2008). The effects of long and heavy trucks on the transport system: Report on a government assignment. Linköping: Statens väg-och transportforskningsinstitut.

De Ceuster, G., Breemersch, T., Van Herbruggen, B., Verweij, K., Davydenko, I., Klingender, M., ... and Bereni, M. (2008). Effects of adapting the rules on weights and dimensions of heavy commercial vehicles as established within directive 96/53/EC.

Leach, D. Z., & Savage, C. J. (2012). Impact assessment: High capacity vehicles.

McKinnon, A. (2016). Freight transport in a low-carbon world: Assessing opportunities for cutting emissions. TR News, (306).

Korzhenevych, A., Dehnen, N., Bröcker, J., Holtkamp, M., Meier, H., Gibson, G., … Cox, V. (2014). Update of the handbook on external costs of transport. London: European Commission DG MOVE.

Bálint, A., Fagerlind, H., Martinsson, J., & Holmqvist, K. (2014). Accident analysis for traffic safety aspects of high capacity transports.

Castillo-Manzano, J. I., Castro-Nuño, M., & Fageda, X. (2016). Exploring the relationship between truck load capacity and traffic accidents in the European Union. Transportation research part E: logistics and transportation review, 88, 94–109.

Hassall, K. (2014). Quantifying the benefits of high productivity vehicles (no. AP-R465/14).

Montufar, J., Regehr, J., Rempel, G., & McGregor, R. V. (2007). Long combination vehicle (LCV) safety performance in Alberta: 1999–2005. Calgary: Montufar and Associates Transportation Consulting.

Wåhlberg, A. E. (2008). Meta-analysis of the difference in accident risk between long and short truck configurations. Journal of Risk Research, 11(3), 315–333.

Kyster-Hansen, H., & Sjögren, J. (2013). Roadmap high capacity transports on road in Sweden. In Forum for innovation in the transport sector, Lindholmen Science Park, Gothenburg.

Andersson, J., Renner, L., Sandin, J., Fors, C., Strand, N., Hjort, M., … Almqvist, S. (2011). Trafiksäkerhetspåverkan vid omkörning av 30-metersfordon. Linköping: Statens väg-och transportforskningsinstitut.

Kulcsar, B., (2017). SAEFFLOW – Safety and efficiency analysis of HCT-traffic flow indicators. Rapport för FFI-projekt 2014–03933, 2017.

Natanaelsson, K., Åsman, P., Grudemo, S., & Adell, E. (2015). Rapport Systemanalys av införande av HCT på väg Slutversion – Underlagsrapport till regeringsuppdraget “Fördjupade analyser av att tillåta tyngre fordon på det allmänna vägnätet” (Rapport 2015:234). Borlänge: Trafikverket.

Ericson, J., Lindberg, G., Mellin, A., & Vierth, I. (2010). Co-modality—The socio-economic effects of longer and/or heavier vehicles for land-based freight transport. In Proceedings of the 12th WCTR, Lisbon, Portugal, (pp. 11–15).

Cider, L., and Ranäng, S. (2013). Slutrapport Duo2-Trailer. FFI (Fordonsstrategisk Forskning och Innovation)

Löfroth, C., Larsson, L., Enström, J., Cider, L., Svenson, G., Aurell, J., … Asp, T. (2012). ETT-a modular system for forest transport. In HVTT12: 12th international symposium on heavy vehicle transport technology.

Kohn, C. (2005). Centralisation of distribution systems and its environmental effects (doctoral dissertation, Ekonomiska institutionen).

McKinnon, A. C. (2012b). Reducing energy consumption and emissions in the logistics sector. In Energy, transport, and the environment, (pp. 521–537). London: Springer.

Löfroth, C., and Svenson, G. (2012). ETT–Modulsystem för skogstransporter–En trave Till (ETT) och Större Travar (ST). Arbetsrapport från Skogforsk 758. 158 s.

Adell, E., Ljungberg, C., Börefelt, A., & Hanander, M. (2013). 1-årsutvärdering av projektet ETT coil till (ECT). Trivector, report PM, (vol. 37).

Bergqvist, R., & Monios, J. (2016). The last mile, inbound logistics and intermodal high capacity transport-the case of Jula in Sweden. World Review of Intermodal Transportation Research, 6(1), 74–92.

Transport and Environment (2013), “Longer and heavier lorries in the EU”, Available at: https://www.transportenvironment.org/sites/te/files/publications/T%26E%20position%20paper%20megatrucks%202013_final.pdf [Accessed 28 Feb 2019].

Vierth, I., Lindgren, S., & Lindgren, H. (2018). Impact of higher road vehicle dimensions on modal split: An ex-post analysis for Sweden. Linköping: Statens väg-och transportforskningsinstitut.

Bergqvist, R., & Behrends, S. (2011). Assessing the effects of longer vehicles: The case of pre-and post-haulage in intermodal transport chains. Transport Reviews, 31(5), 591–602.

Rodrigues, V. S., Piecyk, M., Mason, R., & Boenders, T. (2015). The longer and heavier vehicle debate: A review of empirical evidence from Germany. Transportation Research Part D: Transport and Environment, 40, 114–131.

Rushton, A., Croucher, P., & Baker, P. (2014). The handbook of logistics and distribution management: Understanding the supply chain. London: Kogan Page Publishers.

DHL, Deklaration av emissionsberäkning, 2018. https://www.logistics.dhl/content/dam/dhl/local/se/dhl-freight/documents/pdf/se-freight-emissionsdeclaration-se.pdf . Accessed 9 Feb 2019.

Natanaelsson, K., & Brandt, J. (2019). Längre lastbilar på det svenska vägnätet – För mer hållbara transporter. (2019:076). Borlänge: Trafikverket.

DHL, 2020, Platser DHL-Freight, https://www.dhl.com/se-sv/home/vara-divisioner/frakt/kundservice/fraktterminaler-och-platser.html . Accessed 27 Feb 2019.

Flodén, J. (2007). Modelling intermodal freight transport. The Potential of Combined Transport in Sweden. Gothenburg: Department of Business Administration Företagsekonomiska institutionen.

Asmoarp, V., Jonsson, R., and Funck, J. (2015). Monitoring fuel consumption of a 74-tonne chip truck in the ETT project. Skogforsk.

Adell, E., Khan, J., Hiselius, L., Lund, E., Nelldal, B. L., Pettersson, F., … Wandel, S. (2016). Systemanalys av införande av HCT på väg i Sverige. Environmental and Energy Systems Studies. Lund: Miljö-och energisystem, LTH, Lunds universitet.

Johansson, F., von Hofsten, H. (2017). HCT-kalkyl - an interactive cost calculation model for comparing trucks of different sizes. Skogforsk.

Swedish Transport Administration (2018). Analysmetod och samhällsekonomiska kalkylvärden för transportsektorn: ASEK 6.1. https://www.trafikverket.se/contentassets/4b1c1005597d47bda386d81dd3444b24/asek-6.1/asek_6_1_hela_rapporten_180412.pdf [Accessed 2 Apr 2019].

Statistics Sweden, (2019). Statistics Database. http://www.scb.se/ [Accessed 05 Feb 2019].

Kharrazi, S., Aurell, J., Sadeghi Kati, M., Jacobson, B., Fröjd, N., & Asp, T. (2014). Towards performance based standards in Sweden. In 13th international heavy vehicle transport technology symposium, San Luis, Argentina, 2014.