A constitutive model for compressible elastomeric solids

Computational Mechanics - Tập 18 - Trang 339-355 - 1996
L. Anand1
1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

A non-linear thermo-elastic constitutive model for the large deformations of isotropic materials is formulated. This model is specialized to account for the physics and thermodynamics of the elastic deformation of rubber-like materials, and based on these molecular considerations a constitutive model for compressible elastomeric solids is proposed. The new constitutive model generalizes the incompressible and isothermal model of Arruda and Boyce (1993) to include the compressibility and thermal expansion of these materials. The model is fit to existing experimental data on vulcanized natural rubbers to determine the material parameters for the rubbers examined. The fit between the simple model and the data is found to be very good for large stretches and moderate volume changes.

Tài liệu tham khảo

Adams, L. H.; Gibson, R. E. 1930: The Compressibility of Rubber. Journal of the Washington Academy of Sciences 20: 213–223 Arruda, E.; Boyce, M. C. 1993: A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids 41: 389–412 Ericksen, J. L. 1991: Introduction to the Thermodynamics of Solids. London: Chapman & Hall Flory, P. J. 1961: Thermodynamic Relations for High Elastic Materials. Trans. Faraday Soc. 57: 829–838 Fong, J. T.; Penn, R. W. 1975: Construction of a Strain-Energy Function for Isotropic Elastic Material. Transactions of the Society of Rheology 19: 99–113 Gurtin, M. 1981: An Introduction to Continuum Mechanics. pp. 175–177. New York: Academic Press James, H. M.; Guth, E. 1943: Theory of the Elastic Properties of Rubber. Journal of Chemical Physics 11: 455–481 Jones, D. F.; Treloar, L. R. G. 1975: The Properties of Rubber in Pure Homogeneous Strain. J. Phys. D: Appl. Phys. 8: 1285–1304 Kuhn, W.; Grün, F. 1942: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung höchelastischer Stoffe. Kolloidzeitschrift 101: 248–271 Meyer, K. H.; Ferri, C. 1935: Sur l'élasticité du caoutchouc. Helv. Chim. Acta. 18: 570–589 Ogden, R. W. 1982: Elastic Deformations of Rubber-like Solids. In: Hopkins H. G.; Sewell, M. J. (eds.) Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, pp. 499–537 Oxford: Pergamon Press Ogden, R. W. 1984: Non-Linear Elastic Deformations. New York: John Wiley & Sons Peng, S. T. J.; Landel, R. F. 1975: Stored Energy Function and Compressibility of Compressible Rubber-like Materials under Large Strain. Journal of Applied Physics 46: 2599–2604 Penn, R. W. 1970: Volume Changes Accompanying the Extension of Rubber. Transactions of the Society of Rheology 14: 509–517 Treloar, L. R. G. 1944: Stress-strain Data for Vulcanized Rubber under Various Types of Deformation. Trans. Faraday Soc. 40: 59–70 Treloar, L. R. G. 1975: The Physics of Rubber Elasticity Oxford: Clarendon Press Truesdell, C.; Noll, W. 1965: The Non-Linear Field Theories of Mechanics, Handbuch Der Physik, Vol III/3: 294–304 Weiner, J. H. 1983: Statistical Mechanics of Elasticity. Chap. 5. New York: John Wiley & Sons Wood, L. A.; Martin, G. M. 1964: Compressibility of Natural Rubber at Pressures below 500 kg/cm2. Journal of Research of the National Bureau of Standards—A. Physics and Chemistry 68 A: 259–268