A conserved juxtacrine signal regulates synaptic partner recognition in Caenorhabditis elegans

Joori Park1, Philip Louis Knezevich1, William Wung1, Shanté Nicole O'Hanlon1, Akshi Goyal1, Kelli L. Benedetti1, Benjamin Barsi‐Rhyne1, Mekala R. Raman1, Natalyn Mock1, Martina Bremer2, Miri VanHoven1
1Department of Biological Sciences, San José State University, San José, CA, 95192, USA
2Department of Mathematics, San José State University, San José, CA, 95192, USA

Tóm tắt

Abstract Background An essential stage of neural development involves the assembly of neural circuits via formation of inter-neuronal connections. Early steps in neural circuit formation, including cell migration, axon guidance, and the localization of synaptic components, are well described. However, upon reaching their target region, most neurites still contact many potential partners. In order to assemble functional circuits, it is critical that within this group of cells, neurons identify and form connections only with their appropriate partners, a process we call synaptic partner recognition (SPR). To understand how SPR is mediated, we previously developed a genetically encoded fluorescent trans-synaptic marker called NLG-1 GRASP, which labels synaptic contacts between individual neurons of interest in dense cellular environments in the genetic model organism Caenorhabditis elegans. Results Here, we describe the first use of NLG-1 GRASP technology, to identify SPR genes that function in this critical process. The NLG-1 GRASP system allows us to assess synaptogenesis between PHB sensory neurons and AVA interneurons instantly in live animals, making genetic analysis feasible. Additionally, we employ a behavioral assay to specifically test PHB sensory circuit function. Utilizing this approach, we reveal a new role for the secreted UNC-6/Netrin ligand and its transmembrane receptor UNC-40/Deleted in colorectal cancer (DCC) in SPR. Synapses between PHB and AVA are severely reduced in unc-6 and unc-40 animals despite normal axon guidance and subcellular localization of synaptic components. Additionally, behavioral defects indicate a complete disruption of PHB circuit function in unc-40 mutants. Our data indicate that UNC-40 and UNC-6 function in PHB and AVA, respectively, to specify SPR. Strikingly, overexpression of UNC-6 in postsynaptic neurons is sufficient to promote increased PHB-AVA synaptogenesis and to potentiate the behavioral response beyond wild-type levels. Furthermore, an artificially membrane-tethered UNC-6 expressed in the postsynaptic neurons promotes SPR, consistent with a short-range signal between adjacent synaptic partners. Conclusions These results indicate that the conserved UNC-6/Netrin-UNC-40/DCC ligand-receptor pair has a previously unknown function, acting in a juxtacrine manner to specify recognition of individual postsynaptic neurons. Furthermore, they illustrate the potential of this new approach, combining NLG-1 GRASP and behavioral analysis, in gene discovery and characterization.

Từ khóa


Tài liệu tham khảo

Shen K, Scheiffele P: Genetics and cell biology of building specific synapse connectivity. Annu Rev Neurosci. 2010, 33: 473-507. 10.1146/annurev.neuro.051508.135302.

Hamos JE, Van Horn SC, Raczkowski D, Sherman SM: Synaptic circuits involving an individual retinogeniculate axon in the cat. J Comp Neurol. 1987, 259: 165-192. 10.1002/cne.902590202.

White JG, Southgate E, Thomson JN, Brenner S: The structure of the nervous system of the nematode C. elegans. Philos Trans R Soc Lond B Biol Sci. 1986, 314: 1-340. 10.1098/rstb.1986.0056.

Moore SW, Tessier-Lavigne M, Kennedy TE: Netrins and their receptors. Adv Exp Med Biol. 2007, 621: 17-31. 10.1007/978-0-387-76715-4_2.

Dickson BJ: Molecular mechanisms of axon guidance. Science. 2002, 298: 1959-1964. 10.1126/science.1072165.

Tessier-Lavigne M, Goodman CS: The molecular biology of axon guidance. Science. 1996, 274: 1123-1133. 10.1126/science.274.5290.1123.

Teichmann HM, Shen K: UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons. Nat Neurosci. 2011, 14: 165-172. 10.1038/nn.2717.

Colón-Ramos DA, Margeta MA, Shen K: Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science. 2007, 318: 103-106. 10.1126/science.1143762.

Poon VY, Klassen MP, Shen K: UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature. 2008, 455: 669-673. 10.1038/nature07291.

Shen K, Bargmann CI: The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell. 2003, 112: 619-630. 10.1016/S0092-8674(03)00113-2.

Shen K, Fetter RD, Bargmann CI: Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell. 2004, 116: 869-881. 10.1016/S0092-8674(04)00251-X.

Kim S, Burette A, Chung HS, Kwon SK, Woo J, Lee HW, Kim K, Kim H, Weinberg RJ, Kim E: NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci. 2006, 9: 1294-1301. 10.1038/nn1763.

Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S: Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc Natl Acad Sci USA. 2007, 104: 14801-14806. 10.1073/pnas.0706919104.

Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, Sheng M, Kim E: Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci. 2009, 12: 428-437. 10.1038/nn.2279.

Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM: An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009, 61: 734-749. 10.1016/j.neuron.2009.01.017.

Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC: SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science. 2002, 297: 1525-1531. 10.1126/science.1072356.

Yamagata M, Weiner JA, Sanes JR: Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell. 2002, 110: 649-660. 10.1016/S0092-8674(02)00910-8.

Yamagata M, Sanes JR: Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature. 2008, 451: 465-469. 10.1038/nature06469.

Feinberg EH, VanHoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmann CI: GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron. 2008, 57: 353-363. 10.1016/j.neuron.2007.11.030.

Hall DH, Russell RL: The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci. 1991, 11: 1-22.

Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S: The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci. 1985, 5: 956-964.

Maricq AV, Peckol E, Driscoll M, Bargmann CI: Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature. 1995, 378: 78-81. 10.1038/378078a0.

Nathoo AN, Moeller RA, Westlund BA, Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA. 2001, 98: 14000-14005. 10.1073/pnas.241231298.

Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH: The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet. 1999, 21: 414-419. 10.1038/7753.

Rogers C, Reale V, Kim K, Chatwin H, Li C, Evans P, de Bono M: Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci. 2003, 6: 1178-1185. 10.1038/nn1140.

WormBase. [http://www.wormbase.org]

Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International. 2004, 11: 36-42.

Hedgecock EM, Culotti JG, Thomson JN, Perkins LA: Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol. 1985, 111: 158-170. 10.1016/0012-1606(85)90443-9.

Hedgecock EM, Culotti JG, Hall DH: The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990, 4: 61-85. 10.1016/0896-6273(90)90444-K.

Wadsworth WG, Bhatt H, Hedgecock EM: Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron. 1996, 16: 35-46. 10.1016/S0896-6273(00)80021-5.

Starich TA, Herman RK, Shaw JE: Molecular and genetic analysis of unc-7, a Caenorhabditis elegans gene required for coordinated locomotion. Genetics. 1993, 133: 527-541.

Baum PD, Garriga G: Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron. 1997, 19: 51-62. 10.1016/S0896-6273(00)80347-5.

Rhiner C, Gysi S, Frohli E, Hengartner MO, Hajnal A: Syndecan regulates cell migration and axon guidance in C. elegans. Development. 2005, 132: 4621-4633. 10.1242/dev.02042.

Chang C, Adler CE, Krause M, Clark SG, Gertler FB, Tessier-Lavigne M, Bargmann CI: MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol. 2006, 16: 854-862. 10.1016/j.cub.2006.03.083.

Gitai Z, Yu TW, Lundquist EA, Tessier-Lavigne M, Bargmann CI: The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron. 2003, 37: 53-65. 10.1016/S0896-6273(02)01149-2.

Colavita A, Culotti JG: Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev Biol. 1998, 194: 72-85. 10.1006/dbio.1997.8790.

Kulkarni G, Li H, Wadsworth WG: CLEC-38, a transmembrane protein with C-type lectin-like domains, negatively regulates UNC-40-mediated axon outgrowth and promotes presynaptic development in Caenorhabditis elegans. J Neurosci. 2008, 28: 4541-4550. 10.1523/JNEUROSCI.5542-07.2008.

Baran R, Aronoff R, Garriga G: The C. elegans homeodomain gene unc-42 regulates chemosensory and glutamate receptor expression. Development. 1999, 126: 2241-2251.

Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV: Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci. 2001, 21: 1510-1522.

Shaham S, Bargmann CI: Control of neuronal subtype identity by the C. elegans ARID protein CFI-1. Genes Dev. 2002, 16: 972-983. 10.1101/gad.976002.

Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, Culotti JG: UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996, 87: 187-195. 10.1016/S0092-8674(00)81337-9.

Asakura T, Waga N, Ogura K, Goshima Y: Genes required for cellular UNC-6/netrin localization in Caenorhabditis elegans. Genetics. 2010, 185: 573-585. 10.1534/genetics.110.116293.

Hall DH, Hedgecock EM: Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 1991, 65: 837-847. 10.1016/0092-8674(91)90391-B.

Hilliard MA, Bargmann CI, Bazzicalupo P: C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol. 2002, 12: 730-734. 10.1016/S0960-9822(02)00813-8.

Rajasekharan S, Kennedy TE: The netrin protein family. Genome Biol. 2009, 10: 239-10.1186/gb-2009-10-9-239.

Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L: Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell. 2003, 4: 371-382. 10.1016/S1534-5807(03)00054-6.

Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M: The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell. 1994, 78: 409-424. 10.1016/0092-8674(94)90420-0.

Manitt C, Colicos MA, Thompson KM, Rousselle E, Peterson AC, Kennedy TE: Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord. J Neurosci. 2001, 21: 3911-3922.

Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA, Cohen-Cory S: Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. J Neurosci. 2009, 29: 11065-11077. 10.1523/JNEUROSCI.0947-09.2009.

Xu B, Goldman JS, Rymar VV, Forget C, Lo PS, Bull SJ, Vereker E, Barker PA, Trudeau LE, Sadikot AF, Kennedy TE: Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon guidance, and axon arborization. Neuroscience. 169: 932-949.

Brenner S: The genetics of Caenorhabditis elegans. Genetics. 1974, 77: 71-94.

Loria PM, Hodgkin J, Hobert O: A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. J Neurosci. 2004, 24: 2191-2201. 10.1523/JNEUROSCI.5462-03.2004.

L'Etoile ND, Bargmann CI: Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron. 2000, 25: 575-586. 10.1016/S0896-6273(00)81061-2.

Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M, Bargmann CI, Shen K: Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci. 2006, 9: 1488-1498. 10.1038/nn1806.

Coburn CM, Bargmann CI: A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron. 1996, 17: 695-706. 10.1016/S0896-6273(00)80201-9.

R Development Core Team: R: A Language and Environment for Statistical Computing. 2009, Vienna, Austria: R Foundation for Statistical Computing