A conjecture concerning determinism, reduction, and measurement in quantum mechanics

Quantum Studies: Mathematics and Foundations - Tập 3 - Trang 279-292 - 2016
Arthur Jabs1
1Alumnus, Technical University Berlin, Berlin, Germany

Tóm tắt

It is shown that it is possible to introduce determinism into quantum mechanics by tracing the probabilities in the Born rules back to pseudorandomness in the absolute phase constants of the wave functions. Each wave function is conceived to contain an individual phase factor $$\exp (\mathrm {i}\alpha )$$ . In an ensemble of systems, the phase constants $$\alpha $$ are taken to be pseudorandom numbers. A reduction process (collapse), independent of any measurement, is conceived to be a spatial contraction of two wavepackets when they meet and satisfy a certain criterion. The criterion depends on the phase constants of both wavepackets. The measurement apparatus fans out the incoming wavepacket into spatially separated eigenpackets of the observable and a reduction associates the point of contraction with an eigenvalue of the observable. The theory is nonlocal and contextual.

Tài liệu tham khảo

Smoluchowski, M.v.: Über den Begriff des Zufalls und den Ursprung der Wahrscheinlichkeitsgesetze in der Physik. Die Naturwissenschaften 6 (17), 253–263 (1918) Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002) Dirac, P.A.M.: Development of the Physicist’s Conception of Nature. In: Mehra, J. (ed.): The Physicist’s Conception of Nature, pp. 1–14. Reidel Publishing Company, Dordrecht (1973) (the quotation is from p. 7) Neumann, J.v.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton NJ, 1955) Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967) Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006). (Slightly updated version) arXiv:quant-ph/0604079 Ax, J., Kochen, S.: Extension of quantum mechanics to individual systems. arXiv:quant-ph/9905077 Einstein, A.: On the method of theoretical physics. Philos. Sci. 1, 163–169 (1934) (the quotation is from p. 169) Jabs, A.: An interpretation of the formalism of quantum mechanics in terms of epistemological realism. Brit. J. Philos. Sci. 43, 405–421 (1992). arXiv:1212.4687 Jabs, A.: Quantum mechanics in terms of realism. (2016). arXiv:quant-ph/9606017 Jabs, A.: A realist view on the treatment of identical particles. (2015). arXiv:quant-ph/0605136 Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803–827 (1926) Born, M.: Zur Quantenmechanik der Stoßvorgänge, Z. Phys. 37, 863–867 (1926). (English translation in [38, p. 52-55]) Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987) Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. I, 3rd. edn., Vol. II, 2nd. edn. Wiley, New York (1970 and 1971) Paul, H.: Introduction to Quantum Optics. Cambridge University Press, Cambridge (2004) (Sec. 7.4) Kaltenbaek, R., Blauensteiner, B., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006). arXiv:quant-ph/0603048 Laloë, F.: The hidden phase of Fock states; quantum non-local effects. Eur. Phys. J. D33 (1), 87–97 (2005). arXiv:quant-ph/0409097 Klaers, J., Schmitt, J., Vewinger, F., Weitz, M.: Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010). arXiv:1007.4088 Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. I, II. Wiley, New York (1977) Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 59(1), 1–46 (1954) Messiah, A.: Quantum Mechanics, vol. I, II. North-Holland Publishing Company, Amsterdam (1961) Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. III, pp. 6-5–6-6. Addison-Wesley, Reading (1965) Lévy-Leblond, J.-M.: Quantum fact and classical fiction: clarifying Landé’s pseudo-paradox. Am. J. Phys. 44(11), 1130–1132 (1976) Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., Arndt, M.: Colloquium: quantum interference of clusters and molecules. Rev. Mod. Phys. 84(1), 157–173 (2012). arXiv:1109.5937 Arndt, M., Hornberger, K.: Quantum interferometry with complex molecules. In: Deveaud-Pledran, B., Quattropani, A., Schwendimann, P. (eds.) Quantum Coherence in Solid State Systems, International School of Physics ‘Enrico Fermi’, Course CLXXI, vol. 171. IOS Press, Amsterdam (2009). arXiv:0903.1614 Arndt, M., Gerlich, S., Hornberger, K., Mayor, M.: Interferometrie mit komplexen Molekülen. Phys. J. 9(10), 37–43 (2010) Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms, p. 83. Plenum, New York (1977) Jauch, J.M., Rohrlich, F.: The Theory of Photons and Electrons, p. 410. Springer, New York (1976) Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003). arXiv:quant-ph/0112095 Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–774 (2003). arXiv:quant-ph/0105127 Joos, E.: Decoherence: an introduction. In: Physics and philosophy (2007—ID: 010), pp. 1–26 Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986) ([5, p. 201–212]) Bassi, A.: Dynamical reduction models: present status and future developments. J. Phys. Conf. Ser. 67 012013 (2007). (and literature cited therein) arXiv:quant-ph/0701014 Pearle, P.: Collapse models. In: Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, pp. 195–234. Springer, Berlin (1999). arXiv:quant-ph/9901077 Brusheim-Johansson, H., Hansson, J.: A chaotic dynamical reduction model for the quantum mechanical state vector. arXiv:quant-ph/0611003 Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983) Einstein, A.: Relativity, The Special and the General Theory (Methuen, London, 1970) Appendix V, the quotation is from, pp. 141, 142 (1970) Holland, P.R.: The Quantum Theory of Motion, pp. 350, 404. Cambridge University Press, Cambridge (1993) Süßmann, G.: Einführung in die Quantenmechanik, pp. 27, 75. Bibliographisches Institut, Mannheim (1963) Wigner, E.P.: Interpretation of Quantum Mechanics. 38, pp. 260–314 (especially p. 291) Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.): Albert Einstein: Philosopher-Scientist, pp. 199–241. Cambridge University Press, London (1949) (the quotation is from p. 210 (Reprinted in [38, p. 9–49]) Bunge, M.: Quantum Mechanics and Measurement. Int. J. Quant. Chem. 12(Suppl. 1), 1–13 (1977) Schlosshauer, M., Fine, A.: On Zurek’s derivation of the Born rule. Found. Phys. 35(2), 197–213 (2005). (This paper comments on various attempts to derive the Born rules) arXiv:quant-ph/0312058 Heitler, W.: The Quantum Theory of Radiation, 3rd edn, p. 65. Oxford University Press, Oxford (1954) Akhiezer, A.I., Berestetskii, V.B.: Quantum Electrodynamics, p. 178. Interscience Publishers, New York (1965) Davydov, A.S.: Quantum Mechanics, 2nd edn, p. 130. Pergamon Press, Oxford (1976) Dirac, P.A.M.: The quantum theory of emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927) Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995) (Sec. 10.7) Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, Vol. V, Part 1. Springer, Berlin (1958) pp. 60 footnote 1. English translation of a 1958 reprint by Achuthan, P., Venkatesan, K.: General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980) p. 63, footnote 2 Schrödinger, E.: Spezielle Relativitätstheorie und Quantenmechanik (Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1931)) pp. 238–247 (especially p. 242) Becker, R.: Electromagnetic Fields and Interactions, vol. II, Quantum Theory of Atoms and Radiation, pp. 125. Dover Publications, New York (1982)