A computational study of the relationships linking lightning frequency and other thundercloud parameters

Quarterly Journal of the Royal Meteorological Society - Tập 121 Số 527 - Trang 1525-1548 - 1995
M. Baker1, Hugh J. Christian2, J. Latham3
1University of Washington USA
2National Aeronautics and Space Administration, USA
3National Center for Atmospheric Research, USA

Tóm tắt

AbstractIn an effort to optimize the value of global‐scale measurements obtained with the NASA/MSFC satelliteborne Lightning Imaging System (LIS), a simple computational model of thundercloud electrification has been developed, from which it is possible to derive crude relationships between lightning frequency f (which LIS will measure) and cloud parameters such as radar reflectivity Z, precipitation rate P, updraught speed w, cloud radius R, ice‐crystal concentration i and graupel‐pellet concentration Ng. Electric field‐growth is assumed to occur via the non‐inductive charging mechanism, for both Fletcher and Hallett‐Mossop types of glaciation mechanisms. A simple criterion is used to distinguish between cloud‐to‐ground and intracloud lightning discharges. f is found to be especially sensitive to w in situations where, as updraught speed increases, the temperature at balance level, Tbal, of the upper boundary of the charging zone falls. In these circumstances N1 and the sizes of the ice hydrometeors are significantly increased, with a corresponding enhancement of the effectiveness of charge transfer.Over a wide range of conditions, f is found to be roughly proportional to the first power of the parameters R1 Ni Ng and Z and (in some circumstances) to at least the sixth power of w. the relationship between f and P depends critically on whether or not w and Tbal are strongly linked. Hallett‐Mossop glaciation is capable of producing inverted‐polarity lightning from thunderclouds; Fletcher glaciation is not.

Từ khóa


Tài liệu tham khảo

10.1002/qj.49711347807

Buechler D. E. Wright P. D.andGoodman S. J.1990‘Lightning‐rainfall relationships during COHMEX.’ Proceedings of the conference on atmospheric electricity Alta Canada. American Meteorological Society

10.1029/JD090iD04p06091

10.1002/qj.49710243111

Christian H.andGoodman S.1992‘Global observations of lightning from space’. Pp.316–321in Proceedings 9th international conference on atmospheric electricity St. Petersburg

Christian H. J. Blakesee R. J.andGoodman S. J.1992‘Lightning imaging sensor for the Earth observing system’. NASA Tech. Memorandum 4350

10.1002/qj.49710042406

Fletcher N., 1969, The physics of rainclouds

Forbes G. S.1994‘Lightning strokes using LDAR and companion data sets: 1994 Research Reports’. NASA/ASEE Summer Faculty Fellowship Program

Goodman S. J.andBuechler D. E.1990‘Lightning‐rainfall relationships’. Proceedings of a conference on operational precipitation estimation and prediction Anaheim California 1990. American Meteorological Society

Goodman S. J.andRaghavan R.1993‘Investigating the relation between precipitation and lightning using polarimetric radar observations.’ Proceedings of an international conference on radar meteorology Norman Oklahoma 1993

10.1029/GL015i011p01185

10.1002/qj.49710042404

10.1038/249026a0

10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2

10.1029/92JD00077

10.1002/qj.49710343606

10.1002/qj.49710946111

10.1256/smsqj.45201

10.1029/90JD02577

10.1029/GL017i006p00713

10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2

10.1175/1520-0469(1990)047<2085:PCTGLI>2.0.CO;2

10.1175/1520-0469(1991)048<0825:EAKSOT>2.0.CO;2

10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2

Williams E. R. Geotis S. G. Renno N. Rutledge S. A. Rasmussen E.andRickenback T.1990‘Hot towers in the tropics’. Proceedings of the conference on atmospheric electricity Alta Canada. American Meteorological Society