A computational investigation of carbon-doped beryllium monoxide nanotubes

Central European Journal of Chemistry - Tập 10 - Trang 96-104 - 2011
Ahmad Seif1, Ehsan Zahedi2, Goodarz M. Rozbahani1
1Department of Physical Chemistry, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran
2Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran

Tóm tắt

To investigate the influence of C-doping on the electrostatic structure properties in the frame work of density functional theory (DFT), we considered beryllium monoxide nanotubes (BeONTs), consisting of 60 Be and 60 O atoms. Full geometry optimizations are performed for all structures, i.e., all atoms are allowed to relax. Afterwards, the chemical shielding (CS) tensors are calculated for Be-9, O-17 and C-13 nuclei in the C-doped forms and also pristine models of the (10, 0) zigzag and (5, 5) armchair BeONTs. Formation energies indicate that C-doping of Be atom (CBe form) could be more favorable than C-doping of O atom (CO form) in both zigzag and armchair BeONTs. Gap energies and dipole moments detected the effects of dopant in the (5, 5) armchair models; however, those parameters did not indicate any significant changes in the C-doped (10, 0) zigzag BeONT models. The results show that the CS values for the Be and O atoms-contributed to the Be-C bonds or those atoms close to the C-doped region-in the CO form of BeONTs (zigzag and armchair) are changed. The same values only for the O atoms-contributed to the O-C bonds- in the CBe form of BeONTs (zigzag and armchair) are changed.

Tài liệu tham khảo

S. Iijima, Nature 354, 56 (1991) N.G. Chopra, R.J. Luyken, K. Cherry, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995) X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, J. Am. Chem. Soc. 124, 14464 (2002) R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature London 360, 444 (1992) R. Tenne, M. Homyonfer, Y. Feldman, Chem. Mater. 10, 3225 (1998) P. Zhang, V.H. Crespi, Phys. Rev. Lett. 89, 056403 (2002) P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskii, Phys. Solid State 48, 398 (2006). A.N. Enyashin, I.R. Shein, A.L. Ivanovskii, Phys. Rev. B75, 193408 (2007) I.R. Shein, A.N. Enyashin, A.L. Ivanovskii, Phys Rev. B75, 245404 (2007) N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994) I.R. Shein, M.V. Ryzhkov, M.A. Gorbunova, Yu.N. Makurin, A.L. Ivanovskii, JETP Lett. 85, 246 (2007) M.A. Gorbunova, I.R. Shein, Yu.N. Makurin, V.V. Ivanovskaya, V.S. Kijko, A.L. Ivanovskii, Physica E 41, 164 (2008) M. Mirzaei, Physica E 42, 1954 (2010) L.B. Casabianca, A.C. De Dios, J. Chem. Phys. 128, 052201(2008) J. Vaara, Phys. Chem. Chem. Phys. 9, 5399 (2007) J.C. Facelli, Concepts Magn. Reson. Part A 20A, 42 (2004) G. Wu, S. Dong, R. Ida, N. Reen, J. Am. Chem. Soc. 124, 1768 (2002) F.A. Bovey, Nuclear Magnetic Resonance Spectroscopy (Academic Press, San Diego, 1998) S. Hou, J. Zhang, Z. Shen, X. Zhao, Z. Xue, Physica E 27, 45 (2005) K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251(1990) M. Mirzaei, J. Mol. Model.17, 527 (2011) M. Mirzaei, A. Seif, N.L. Hadipour, Chem. Phys. Lett. 461, 246 (2008) P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskie, Physics of the solid state 48, 2 (2006)