Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình tổng quát về vận tốc địa chấn cho vịnh Mecklenburg (Biển Baltic) tại rìa lưu vực phía Bắc nước Đức: tác động đến sự phát triển của lưu vực
Tóm tắt
Hình học của các lưu Basin trầm tích thường được mô tả qua việc giải thích các phản xạ địa chấn. Ngoài ra, các tính chất đá của các lớp trầm tích giữa những phản xạ này cung cấp thêm cái nhìn sâu sắc về địa chất dưới bề mặt. Ở đây, chúng tôi trình bày một mô hình cho vịnh Mecklenburg, nằm ở rìa đông bắc của lưu vực phía Bắc nước Đức. Mô hình bao gồm tám lớp; nó bao phủ vận tốc địa chấn của trầm tích từ thời Neogen cho đến đáy của Permian Zechstein. Chúng tôi sử dụng tám profile địa chấn để xây dựng mô hình và áp dụng phân tích vận tốc di cư địa chấn kết hợp với di cư chiều sâu trước khi tạo ra. Kết quả là vận tốc trung gian xuống đến độ sâu 5000 m. Một mục tiêu khác của nghiên cứu là điều tra độ nhạy của các vận tốc suy diễn gián tiếp này so với các phép đo trực tiếp trong các lỗ khoan. Các vận tốc từ nghiên cứu này tương đồng tốt với các kết quả trước đó từ profiling địa chấn dọc tại một giếng gần đó. Các lớp địa tầng từ kỷ Cenozoic và Mesozoic trong vịnh Mecklenburg cho thấy xu hướng vận tốc phụ thuộc vào độ sâu rõ rệt. Sự so sánh các xu hướng này với các xu hướng nén dự đoán cho thấy rằng các bất thường chôn lấp trong các đơn vị Trias dưới cao hơn nhiều so với các đơn vị Kỷ Phấn trên. Kết quả này có thể được giải thích do sự xói mòn lớn hơn trong thời kỳ Kỷ Jura trên/Kỷ Phấn dưới so với các thời kỳ Cenozoic. Lớp Zechstein cho thấy vận tốc trung gian giảm dần khi độ dày tăng lên. Nghiên cứu của chúng tôi cho thấy rằng các vận tốc địa chấn suy diễn từ các phép đo trên bề mặt có giá trị cao trong các khu vực có lượng khoan ít.
Từ khóa
#địa chấn #vận tốc địa chấn #mô hình hiệu chỉnh #lưu vực trầm tích #vịnh Mecklenburg #đáy lưu vực #nghiên cứu địa chấtTài liệu tham khảo
Ahlrichs N, Hübscher C, Noack V, Schnabel M, Damm V, Krawczyk CM (2020) Structural evolution at the northeast North German Basin margin: from initial Triassic salt movement to Late Cretaceous-Cenozoic remobilization. Tectonics 39:e2019TC005927. https://doi.org/10.1029/2019TC005927
Al-Yahya K (1989) Velocity analysis by iterative profile migration. Geophysics 54:718–729. https://doi.org/10.1190/1.1442699
Andsbjerg J, Nielsen LH, Johannessen PN, Dybkjær K (2001) Divergent development of two neighbouring basins following the jurassic north sea doming event: the Danish Central Graben and the Norwegian-Danish Basin. In: Martinsen OJ, Dreyer T (eds) Norwegian Petroleum Society Special Publications, vol 10. Elsevier, Amsterdam, pp 175–197. https://doi.org/10.1016/S0928-8937(01)80013-8
Bachmann GH, Voigt T, Bayer U, von Eynatten H, Legler B, Littke R (2008) Depositional history and sedimentary cycles in the central European basin system. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the example of the central European basin system. Springer, pp 156–172. https://doi.org/10.1007/978-3-540-85085-4_4
Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordseesektor. Geol Jahr Reihe A 153:3–95
Corcoran DV, Doré AG (2005) A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth Sci Rev 72:129–168. https://doi.org/10.1016/j.earscirev.2005.05.003
Dadlez R, Jóźwiak W, Młynarski S (1997) Subsidence and inversion in the western part of Polish Basin - data from seismic velocities. Geol Q 41:197–208
de Jager J (2003) Inverted basins in the Netherlands, similarities and differences. Netherlands Journal of Geosciences - Geologie en Mijnbouw 82:339–349. https://doi.org/10.1017/S0016774600020175
Densley MR, Hillis RR, Redfearn JEP (2000) Quantification of uplift in the Carnarvon basin based on interval velocities. Aust J Earth Sci 47:111–122. https://doi.org/10.1046/j.1440-0952.2000.00765.x
Erlström M (2020) Carboniferous-Neogene tectonic evolution of the Fennoscandian transition zone, southern Sweden. Geol Soc Lond Mem 50:603–620. https://doi.org/10.1144/m50-2016-25
Etgen J, Gray SH, Zhang Y (2009) An overview of depth imaging in exploration geophysics. Geophysics 74:WCA5–WCA17. https://doi.org/10.1190/1.3223188
Faust LY (1951) Seismic velocity as a function of depth and geologic time. Geophysics 16:192–206. https://doi.org/10.1190/1.1437658
Feßer S (1980) Bohrloch Gutachten Vertikalprofilierung Brg. Objekt 101. VEB Geophysik, Leipzig
Hoth K, Rusbült J, Zagora K, Beer H, Hartmann O (1993) Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke – Dokumentation für den Zeitabschnitt 1962–1990. Verlag der Gesellschaft für Geologische Wissenschaften, Berlin
Hansen MB, Scheck-Wenderoth M, Hübscher C, Lykke-Andersen H, Dehghani A, Hell B, Gajewski D (2007) Basin evolution of the northern part of the Northeast German Basin — insights from a 3D structural model. Tectonophysics 437:1–16. https://doi.org/10.1016/j.tecto.2007.01.010
Hübscher C et al. (2017) BalTec - Cruise No. MSM52 - March 1 - March 28, 2016 - Rostock (Germany) - Kiel (Germany). https://doi.org/10.2312/cr_msm52
Hübscher C, Hansen MB, Triñanes SP, Lykke-Andersen H, Gajewski D (2010) Structure and evolution of the Northeastern German Basin and its transition onto the Baltic Shield. Mar Pet Geol 27:923–938. https://doi.org/10.1016/j.marpetgeo.2009.10.017
Japsen P (1993) Influence of Lithology and Neogene uplift on seismic velocities in Denmark: implications for depth conversion of maps. AAPG Bull 77:194–211
Japsen P (1998) Regional velocity-depth anomalies, North Sea Chalk: a record of overpressure and Neogene uplift and erosion. AAPG Bull 82:2031–2074
Japsen P (2000) Investigation of multi-phase erosion using reconstructed shale trends based on sonic data. Sole Pit axis. North Sea Global and Planetary Change 24:189–210. https://doi.org/10.1016/S0921-8181(00)00008-4
Japsen P (2018) Sonic velocity of chalk, sandstone and marine shale controlled by effective stress: velocity-depth anomalies as a proxy for vertical movements. Gondwana Res 53:145–158. https://doi.org/10.1016/j.gr.2017.04.013
Japsen P, Bidstrup T (1999) Quantification of the late Cenozoic erosion in Denmark based on sonic data and basin modelling. Bull Geol Soc Den 46:79–99
Japsen P, Mukerji T, Mavko G (2007) Constraints on velocity-depth trends from rock physics models. Geophys Prospect 55:135–154. https://doi.org/10.1111/j.1365-2478.2007.00607.x
Jaritz W (1980) Einige Aspekte der Entwicklungsgeschichte der nordwestdeutschen Salzstöcke. Zeitschrift der Deutschen Geologischen Gesellschaft 131:307–408
Jaritz W, Best G, Hildebrand G, Jürgens U (1991) Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. Geol Jahrb 45:23–57
John H (1975) Hebungs- und Senkungsvorgänge in Nordwestdeutschland. Erdöl und Kohle 28:273–277
Kilhams B, Stevanovic S, Nicolai C (2018) The ‘Buntsandstein’ gas play of the Horn Graben (German and Danish offshore): dry well analysis and remaining hydrocarbon potential. Geological Society, London, Special Publications 469:169–192. https://doi.org/10.1144/sp469.5
Kley J (2018) Timing and spatial patterns of Cretaceous and Cenozoic inversion in the Southern Permian Basin. Geological Society, London, Special Publications 469:19–31. https://doi.org/10.1144/sp469.12
Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36:839–842. https://doi.org/10.1130/g24930a.1
Kossow D, Krawczyk CM (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Mar Pet Geol 19:601–618. https://doi.org/10.1016/S0264-8172(02)00032-6
Marsden D (1992) Vo-K method of depth conversion. Leading Edge 11:53–54
Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005) The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north central Europe. Tectonophysics 397:113–126. https://doi.org/10.1016/j.tecto.2004.10.004
Maystrenko Y, Bayer U, Brink H-H, Littke R (2008) The central European basin system – an overview. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the central European basin system. Springer, pp 15–34. https://doi.org/10.1007/978-3-540-85085-4_2
Maystrenko Y, Bayer U, Scheck-Wenderoth M (2011) 3D structural model of the Glueckstadt Graben. NW Germany Deutsches GeoForschungsZentrum GFZ, Potsdam. https://doi.org/10.2312/GFZ.b103-11084
Mazur S, Dunlap WJ, Turniak K, Oberc-Dziedzic T (2006) Age constraints for the thermal evolution and erosional history of the central European Variscan belt: new data from the sediments and basement of the Carboniferous foreland basin in western Poland. J Geol Soc 163:1011–1024. https://doi.org/10.1144/0016-76492004-170
Menning M (2018) The stratigraphic table of Germany 2016 (STG 2016). German J Geol 169:105–128. https://doi.org/10.1127/zdgg/2018/0161
Nielsen LH, Japsen P (1991) Deep wells in Denmark 1935 - 1990: lithostratigraphic subdivision vol 31. Danmarks Geologiske Undersøgelse Serie A:31. København
Reinhardt H-G (1993) Structure of Northeast Germany: regional depth and thickness maps of Permian to tertiary intervals compiled from seismic reflection data. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons III. Springer, Berlin, pp 155–165. https://doi.org/10.1007/978-3-642-77859-9
Rodon S, Littke R (2005) Thermal maturity in the central European basin system (Schleswig-Holstein area): results of 1D basin modelling and new maturity maps. Int J Earth Sciences 94:815–833. https://doi.org/10.1007/s00531-005-0006-1
Scheck-Wenderoth M, Maystrenko Y, Hübscher C, Hansen M, Mazur S (2008) Dynamics of salt basins. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the central European basin system. Springer, pp 307–322. https://doi.org/10.1007/978-3-540-85085-4_6
Scheck M, Bayer U (1999) Evolution of the Northeast German Basin — inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169. https://doi.org/10.1016/S0040-1951(99)00194-8
Scherbaum F (1982) Seismic velocities in sedimentary rocks — indicators of subsidence and uplift? Geol Rundsch 71:519–536. https://doi.org/10.1007/bf01822381
Schlüter H-U, Best G, Jürgens U, Binot F (1997a) Interpretation reflexionsseismischer Profile zwischen baltischer Kontinentalplatte und kaledonischem Becken in der südlichen Ostsee – erste Ergebnisse. Zeitschrift der Deutschen Geologischen Gesellschaft 148:1–32. https://doi.org/10.1127/zdgg/148/1997/1
Schlüter H-U, Jürgens U, Best G, Binot F, Stamme H (1997b) Analyse geologischer und geophysikalischer Daten aus der südlichen Ostsee (SASO). Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
Seidel E, Meschede M, Obst K (2018) The Wiek fault system east of Rügen Island: origin, tectonic phases and its relationship to the trans-European suture zone. Geological Society, London, Special Publications 469:59–82. https://doi.org/10.1144/sp469.10
Stockwell JW (1999) The CWP/SU: Seismic Un∗x package. Comput Geosci 25:415–419. https://doi.org/10.1016/S0098-3004(98)00145-9
Stork C (1992) Reflection tomography in the postmigrated domain. Geophysics 57:680–692. https://doi.org/10.1190/1.1443282
Strohmenger C, Voigt E, Zimdars J (1996) Sequence stratigraphy and cyclic development of Basal Zechstein carbonate-evaporite deposits with emphasis on Zechstein 2 off-platform carbonates (Upper Permian, Northeast Germany). Sed Geol 102:33–54. https://doi.org/10.1016/0037-0738(95)00058-5
Tucker ME (1991) Sequence stratigraphy of carbonate-evaporite basins: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. J Geol Soc 148:1019–1036. https://doi.org/10.1144/gsjgs.148.6.1019
Underhill JR, Partington MA (1993) Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphic evidence. Geological Society, London, Petroleum Geology Conference series 4:337–345. https://doi.org/10.1144/0040337
Urai JL, Schléder Z, Spiers CJ, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the central European basin system. Springer, pp 277 - 290. https://doi.org/10.1007/978-3-540-85085-4_5
van Dalfsen W, Mijnlieff HF, Simmelink HJ (2005) Interval velocities of a Triassic claystone: key to burial history and veloctiy modelling. Paper presented at the EAGE 67th Conference & Exhibition, Madrid, 13 - 16 June 2005
Warsitzka M, Kley J, Jähne-Klingberg F, Kukowski N (2017) Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes. Int J Earth Sciences 106:131–155. https://doi.org/10.1007/s00531-016-1306-3
Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579–579. https://doi.org/10.1029/98EO00426
Wong TE et al (2004) Geological atlas of the subsurface of the Netherlands: onshore. Netherlands Inst. of Appl, Geoscience TNO, Utrecht
Ziegler PA (1990a) Geological atlas of western and central Europe, 2nd edn. Shell Internationale Petroleum Maatschappij, The Hague
Ziegler PA (1990b) Tectonic and Palaeogeographic development of the North Sea rift system. In: Blundell DJ, Gibbs AD (eds) Tectonic evolution of the North Sea rifts. Clarendon Press, Oxford, pp 1–36
Zöllner H, Reicherter K, Schikowsky P (2008) High-resolution seismic analysis of the coastal Mecklenburg Bay (North German Basin): the pre-Alpine evolution. Int J Earth Sciences 97:1013–1027. https://doi.org/10.1007/s00531-007-0277-9