A composite robotic-based measure of upper limb proprioception
Tóm tắt
Proprioception is the sense of the position and movement of our limbs, and is vital for executing coordinated movements. Proprioceptive disorders are common following stroke, but clinical tests for measuring impairments in proprioception are simple ordinal scales that are unreliable and relatively crude. We developed and validated specific kinematic parameters to quantify proprioception and compared two common metrics, Euclidean and Mahalanobis distances, to combine these parameters into an overall summary score of proprioception. We used the KINARM robotic exoskeleton to assess proprioception of the upper limb in subjects with stroke (N = 285. Mean days post-stroke = 12 ± 15). Two aspects of proprioception (position sense and kinesthetic sense) were tested using two mirror-matching tasks without vision. The tasks produced 12 parameters to quantify position sense and eight to quantify kinesthesia. The Euclidean and Mahalanobis distances of the z-scores for these parameters were computed each for position sense, kinesthetic sense, and overall proprioceptive function (average score of position and kinesthetic sense). A high proportion of stroke subjects were impaired on position matching (57%), kinesthetic matching (65%), and overall proprioception (62%). Robotic tasks were significantly correlated with clinical measures of upper extremity proprioception, motor impairment, and overall functional independence. Composite scores derived from the Euclidean distance and Mahalanobis distance showed strong content validity as they were highly correlated (r = 0.97–0.99). We have outlined a composite measure of upper extremity proprioception to provide a single continuous outcome measure of proprioceptive function for use in clinical trials of rehabilitation. Multiple aspects of proprioception including sense of position, direction, speed, and amplitude of movement were incorporated into this measure. Despite similarities in the scores obtained with these two distance metrics, the Mahalanobis distance was preferred.
Tài liệu tham khảo
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. Scand J Rehab Med. 1975;7:13–31.
Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG. Biller J, et al. A Clinical Examination Scale. Stroke: Measurements of Acute Cerebral Infarction; 1989.
Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke 1993;24:58–63.
Pumpa LU, Cahill LS, Carey LM. Somatosensory assessment and treatment after stroke: an evidence-practice gap. Aust Occup Ther J. 2015;62:93–104.
Meyer S, Karttunen AH, Thijs V, Feys H, Verheyden G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A Systematic Review Phys Ther. 2014;94:1220–31.
Broeks JG, Lankhorst GJ, Rumping K, Prevo AJH. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil [Internet]. 1999;21:357–64. Available from: http://www.tandfonline.com/action/journalInformation?journalCode=idre20%5Cnhttp://dx.doi.org/10.1080/096382899297459
Parker VM, Wade DT, Lanoton HR, Wade DT. Loss of arm function after stroke: measurement, frequency, and recovery. Int. Rehabil. Med. 1986;8:69–73.
Semrau JA, Herter TM, Scott SH, Dukelow SP. Examining differences in patterns of sensory and motor recovery after stroke with robotics. Stroke. 2015;46:3459–69.
Sullivan J, Hedman L. Sensory dysfunction following stroke: incidence, significance, examination, and intervention. Top Stroke Rehabil [Internet]. 2008;15:200–17. Available from: https://doi.org/10.1310/tsr1503-200
Carey L. Somatosensory loss after stroke. Crit Rev Phys Rehabil Med. 1995;7:51–91.
Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. Sensory loss in hospital-admitted people with stroke: characteristics, associated factors, and relationship with function. Neurorehabil. Neural Repair [Internet]. 2008 [cited 2013 Feb 22];22:166–72.
Connell L a, Lincoln NB, Radford K a. Somatosensory impairment after stroke: frequency of different deficits and their recovery. Clin. Rehabil. [Internet]. 2008 [cited 2012 Oct 30];22:758–67.
Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. [Internet]. Journal of NeuroEngineering and Rehabilitation; 2012 [cited 2013 Mar 7];9:72.
Bickley LS. Bates’ Guide to Physical Examination and History Taking. 11th ed. Wolters Kluwer Health|Lippincot Williams & Wilkins; 2013.
Lincoln N, Jackson J, Adams S. Reliability and revision of the Nottingham sensory assessment for stroke patients. Physiotherapy [Internet]. 1998;84:358–65.
Stolk-Hornsveld F, Crow JL, Hendriks EP, van der Baan R, Harmeling-van der Wel BC. The Erasmus MC modifications to the (revised) Nottingham sensory assessment: a reliable somatosensory assessment measure for patients with intracranial disorders. Clin. Rehabil 2006;20:160–172.
Hirayama K, Fukutake T, Kawamura M. “Thumb localizing test” for detecting a lesion in the posterior column-medial lemniscal system. J. Neurol. Sci. [internet]. 1999;167:45–9.
Lincoln N, Crow J, Jackson J, Waters G, Adams S, Hodgson P. The unreliability of sensory assessments. Clin. Rehabil. [Internet]. 1991 [cited 2012 Dec 10];5:273–82.
Doyle S, Bennett S, Fasoli S, Mckenna K. Intervenions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev. 2010;42(6):CD006331. doi:10.1002/14651858.CD006331.pub2.
Carey LM, Oke LE, Matyas T a. Impaired limb position sense after stroke: a quantitative test for clinical use. Arch. Phys. Med. Rehabil. [internet]. 1996;77:1271–8.
Goble DJ, Brown SH. Dynamic proprioceptive target matching behavior in the upper limb: effects of speed, task difficulty and arm/hemisphere asymmetries. Behav. Brain Res. [Internet]. 2009 [cited 2013 Jan 17];200:7–14.
Scheidt RA, Lillis KP, Emerson SJ. Visual, motor and attentional influences on proprioceptive contributions to perception of hand path rectilinearity during reaching. Exp. brain res. Germany. 2010;204:239–54.
Goble DJ, Coxon JP, Van Impe A, Geurts M, Van Hecke W, Sunaert S, et al. The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen. Hum Brain Mapp 2012;33:895–908.
Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, et al. Quantitative assessment of limb position sense following stroke. Neurorehabil. Neural Repair [Internet]. 2010 [cited 2012 Nov 26];24:178–87.
Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke [Internet]. 2013;44:3414–21.
Goble DJ, Lewis C a, Brown SH. Upper limb asymmetries in the utilization of proprioceptive feedback. Exp. Brain Res. [Internet]. 2006 [cited 2012 Dec 17];168:307–11.
Bengtson MC, Mrotek LA, Stoeckmann T, Ghez C, Scheidt RA. The arm motion detection (AMD) test. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5349-52. doi:10.1109/EMBC.2014.6944834.
Simo LS, Ghez C, Botzer L, Scheidt RA. A quantitative and standardized robotic method for the evaluation of arm proprioception after stroke. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 2011:8227–30.
Mahalanobis PC. On the generalised distance in statistics. Proc Natl Inst Sci India. 1936;2:49–55.
De Maesschalck R, Jouan-Rimbaud D, Massart DLL. The Mahalanobis distance. Chemom Intell Lab Syst [Internet] 2000;50:1–18. Available from: http://www.sciencedirect.com/science/article/pii/S0169743999000477%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S0169743999000477
Brereton RG, Lloyd GR. Re-evaluating the role of the Mahalanobis distance measure. J Chemom. 2016;30:134–43.
Kitago T, Goldsmith J, Harran M, Kane L, Berard J, Huang S, et al. Robotic therapy for chronic stroke: general recovery of impairment or improved task-specific skill? J. Neurophysiol. [internet]. 2015;114:1885–94.
Vanbellingen T, Kersten B, Van de Winckel A, Bellion M, Baronti F, Muri R, et al. A new bedside test of gestures in stroke: the apraxia screen of TULIA (AST). J Neurol Neurosurg psychiatry [internet]. 2011;82:389–92.
Herter TM, Scott SH, Dukelow SP. Systematic changes in position sense accompany normal aging across adulthood. J. Neuroeng. Rehabil. [Internet]. 2014;11:–43.
Semrau JA, Wang JC, Herter TM, Scott SH, Dukelow SP. Relationship between visuospatial neglect and kinesthetic deficits after stroke. Neurorehabil. Neural repair [internet], Available from. 2015;29:318–28.
Findlater SE, Desai JA, Semrau JA, Kenzie JM, Rorden C, Herter TM, et al. Central perception of position sense involves a distributed neural network – evidence from lesion-behaviour analyses. Cortex [internet]. Elsevier Ltd. 2016;79:42–56.
Kenzie JM, Semrau JA, Findlater SE, Yu AY, Desai JA, Herter TM, et al. Localization of Impaired Kinesthetic Processing Post-stroke. Front. Hum. Neurosci. [Internet]. 2016;10:505.
Box GEP, Cox DR. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodological [Internet]. 1964;26:211–252. Available from: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6A16AA927EC157308AA383797591D5DF?doi=10.1.1.321.3819&rep=rep1&type=pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.321.3819
Lowrey CR, Jackson CPT, Bagg SD, Dukelow SP, Scott SH. A Novel Robotic Task for Assessing Impairments in Bimanual Coordination Post-Stroke. Int. J. Phys. Med. Rehabil. s3:2014, 1–0.
Bourke TC, Lowrey CR, Dukelow SP, Bagg SD, Norman KE, Scott SH. A Robot-Based Behavioural Task to Quantify Impairments in Rapid Motor Decisions and Actions After Stroke. J. Neuroeng. Rehabil. [Internet]. Journal of NeuroEngineering and Rehabilitation. 2016;13:91. Available from: https://doi.org/10.1186/s12984-016-0201-2
Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv. Clin. Assessment. 1987;1:6–18.
Halligan PW, Cockburn J, Wilson BA. The behavioural assessment of visual neglect. Neuropsychol Rehabil An Int J. 1991;1:5–32.
Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.
Cohen J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960;XX:37–46.
Evans J. Straightforward statistics for the behavioral sciences. Pacific Grove, Calif: Brooks/Cole Publishing; 1996.
Rasmussen JL. Evaluating outlier identification tests: Mahalanobis D squared and Comrey Dk. Multivariate Behav Res. 1988;23:189–202.
Todeschini R, Ballabio D, Consonni V, Sahigara F, Filzmoser P. Locally centred Mahalanobis distance: A new distance measure with salient features towards outlier detection. .; 2013;787:1–9. Available from: https://doi.org/10.1016/j.aca.2013.04.034
Biswas D, Cranny A, Gupta N, Maharatna K, Achner J, Klemke J, et al. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification. Hum. Mov. Sci. [Internet]. Elsevier B.V. 2015;40:59–76. Available from: https://doi.org/10.1016/j.humov.2014.11.013
Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage. Elsevier B.V. 2016;137:188–200.
Xiang S, Nie F, Zhang C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recogn. 2008;41:3600–12.
Silveira L Jr, Sathaiah S, Zangaro RA, Pacheco MT, Chavantes MC, Pasqualucci CA. Near-infrared Raman spectroscopy of human coronary arteries: histopathological classification based on Mahalanobis distance. J Clin Laser Med Surg [Internet]. 2003;21:203–8.
Veerbeek JM, Van Wegen E, Van Peppen R, Van Der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9
Schabrun SM, Hillier S. Evidence for the retraining of sensation after stroke: a systematic review. Clin. Rehabil. [Internet]. 2009 [cited 2012 Nov 10];23:27–39.