Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh các yếu tố cường độ ứng suất thu được thông qua tích phân đóng vết nứt và các phương pháp khác sử dụng phương pháp Galerkin mở rộng không có phần tử
Tóm tắt
Trong bài báo này, một phương pháp mới để trích xuất các yếu tố cường độ ứng suất (SIFs) thông qua phương pháp Galerkin mở rộng không có phần tử, sử dụng một sơ đồ tích phân đóng vết nứt (CCI), được đề xuất. Tính toán CCI được sử dụng kết hợp với một kỹ thuật làm mịn cục bộ nhằm cải thiện độ chính xác của các SIF được tính toán trong một số nghiên cứu điển hình về cơ học nứt đàn hồi tuyến tính. Các trường hợp liên quan đến các vấn đề về chế độ hỗn hợp, vết nứt cong và tải trọng nhiệt-cơ. Các SIF do CCI, phương pháp dịch chuyển và phương pháp ứng suất được so sánh với các SIF dựa trên kỹ thuật M-tích được báo cáo trong tài liệu. Phương pháp CCI được đề xuất có những liên hệ rất đơn giản, và vẫn cho độ chính xác tốt. Sự hội tụ của các kết quả cũng được xem xét.
Từ khóa
#cường độ ứng suất #phương pháp Galerkin #vết nứt #tích phân đóng vết nứt #cơ học nứt đàn hồi tuyến tínhTài liệu tham khảo
Liebowitz H, Sandhu JS, Lee JD, Menandro FCM (1995) Computational fracture mechanics: Research and application. Eng Fract Mech 50:653–670
Moës Nicolas, Dolbow John, Belytschko Ted (1999) A finite element for crack growth without remeshing. Int J Num Meth Eng 46:131–150
Liu XY, Xiao QZ, Karihaloo BL (2004) XFEM for direct evaluation of mixed mode SIFs in homogenous and bi-materials. Int J Num Meth Eng 59:1103–1118
Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31:38–48
Nguyen Vinh Phu, Rabczuk Timon, Bordas Stephane, Duflot Marc (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simulat 79:763–813
Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous meshless approximations for non-convex bodies by diffraction and transparency. Comput Mech 18:225–235
Krongauz Y, Belytschko T (1998) EFG approximation with discontinous derivatives. Int J Num Meth Eng 41:1215–1233
Belytschko T, Krongauz Y, Fleming M, Organ D, Liu WK (1996) Smoothing and accelerated computations in element-free Galerkin method. J Comput Appl Math 74:111–126
Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Num Meth Eng 40:1483–1504
Belytschko T, Gu L, Lu YY (1994) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534
Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Num Meth Eng 61:2316–2343
Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39:743–760
Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Trans ASME J Appl Mech 4:526–528
Ventura G, Xu JX, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Num Meth Eng 54:923–944
Zi G, Rabczuk T, Wall WA (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40:367–382
Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Method Appl M 196:2777–2799
Rabczuk T, Bordas S, Zi G (2007) A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Comput Mech 40: 473–495
Bordas S, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Eng Fract Mech 75:943–960
Chan SK, Tuba IS, Wilson WK (1970) On the finite element method in linear fracture mechanics. Eng Fract Mech 30:227–231
Watwood VB (1969) The finite element method for prediction of crack behaviour. Nucl Eng Des 11:323–332
Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 10:487–502
Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans ASME J Appl Mech 35:379–386
Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Trans ASME J Appl Mech 47:335–341
Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938
Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28: 251–274
Sethuraman R, Maiti SK (1988) Finite element based computation of strain energy release rate by modified crack closure integral. Eng Fract Mech 30:227–231
Maiti SK (1992) Finite element computation of crack closure integrals and stress intensity factors. Eng Fract Mech 41:339–348
Guiamatsia I, Falzon B, Davies GAO, Iannucci L (2009) Element-free Galerkin modelling of composite damage. Compos Sci Technol 69:2640–2648
Xueping Chang, Jun Liu, Shirong Li (2011) EFG virtual crack closure technique for the determination of stress intensity factor. Adv Mater Res 250–253:3752–3758
Maiti SK, Mukhopadhyay NK, Kakodkar A (1997) Boundary element method based computation of stress intensity factor by modified crack closure integral. Comput Mech 19:203–210
Lancaster P, Salkauskas K (1981) Surfaces generated by moving least square methods. Math Comput 37:141–158
Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl M 139:289–314
QingWen REN, YuWen DONG, TianTang YU (2009) Numerical modeling of concrete hydraulic fracturing with extended finite element method. Sci China E 52:559–565
Singh R, Carter BJ, Wawrzynek PA, Ingraffea AR (1988) Universal crack closure for SIF estimation. Eng Fract Mech 60:133–146
Sethuraman R, Maiti SK (1998) Finite element based computation of strain energy release rate by modified crack closure integral. Eng Fract Mech 30:227–231
Mukhopadhyay NK, Maiti SK, Kakodkar A (1999) Modified crack closure integral based computation of SIFs for thermoelastic problems through BEM. Nucl Eng Des 187:277–290
Walters Matthew C, Paulino Glaucio H, Dodds RH Jr (2005) Interaction integral procedures for 3-D curved cracks including surface tractions. Eng Fract Mech 72:1635–1663
Amit KC, Kim J-H (2008) Interaction integrals for thermal fracture of functionally graded materials. Eng Fract Mech 75:2542–2565
Wilson WK (1969) Combined Mode Fracture Mechanics, PhD Thesis. University of Pittsburgh, PA
Zhuang Xiaoying, Heaney Claire, Augarde C (2012) On error control in the element-free Galerkin method. Eng Anal Bound Elem 36:351–360
Gavete L, Cuesta JL, Ruiz A (2002) A numerical comparison of two different approximations of the error in a meshless method. Eur J Mech A-Solid 21:1037–1054
Rabczuk T, Belytschko T, Fernandez-Mendez S, Huerta A (2004) Meshfree methods. In: Encyclopedia of computational mechanics. Wiley, Mississauga
Murakami Y (1987) Stress intensity factors handbook. Pergamon Press, Oxford
Hellen TK, Cesari F, Maitan A (1982) The application of fracture mechanics in thermally stressed structures. Int J Pres Ves Pip 10:181–204
Prasad NNV, Aliabadi MH, Rooke DP (1994) The dual boundary element method for thermo-elastic crack problems. Int J Fract 66:255–272
Duflot Marc (2008) The extended finite element method in thermo-elastic fracture mechanics. Int J Num Meth Eng 74:827–847
Wang S, Zhang H (2011) Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch Appl Mech 81:1351–1363
Moës N, Cloirec M, Cartraud P, Remacle J (2003) A computational appraoch to handle complex microstructure geometries. Comput Method Appl M 192:3163–3177
Gdoutos E (1993) Fracture mechanics. Kluwer, Boston
Muthu N, Maiti SK, Falzon BG, Guiamatsia I (2012) Computation of stress intensity factors in functionally graded materials using partition-of-unity meshfree method. Aeronaut J 116(1186)