So sánh các yếu tố cường độ ứng suất thu được thông qua tích phân đóng vết nứt và các phương pháp khác sử dụng phương pháp Galerkin mở rộng không có phần tử

Computational Mechanics - Tập 52 - Trang 587-605 - 2013
N. Muthu1,2,3, S. K. Maiti2, B. G. Falzon4, I. Guiamatsia5
1IITB-Monash Research Academy, IIT Bombay, Powai, India
2Department of Mechanical Engineering, IIT Bombay, Powai, India
3Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
4School of Mechanical and Aerospace Engineering, Queen’s University, Belfast, UK
5School of Civil Engineering, The University of Sydney, Sydney, Australia

Tóm tắt

Trong bài báo này, một phương pháp mới để trích xuất các yếu tố cường độ ứng suất (SIFs) thông qua phương pháp Galerkin mở rộng không có phần tử, sử dụng một sơ đồ tích phân đóng vết nứt (CCI), được đề xuất. Tính toán CCI được sử dụng kết hợp với một kỹ thuật làm mịn cục bộ nhằm cải thiện độ chính xác của các SIF được tính toán trong một số nghiên cứu điển hình về cơ học nứt đàn hồi tuyến tính. Các trường hợp liên quan đến các vấn đề về chế độ hỗn hợp, vết nứt cong và tải trọng nhiệt-cơ. Các SIF do CCI, phương pháp dịch chuyển và phương pháp ứng suất được so sánh với các SIF dựa trên kỹ thuật M-tích được báo cáo trong tài liệu. Phương pháp CCI được đề xuất có những liên hệ rất đơn giản, và vẫn cho độ chính xác tốt. Sự hội tụ của các kết quả cũng được xem xét.

Từ khóa

#cường độ ứng suất #phương pháp Galerkin #vết nứt #tích phân đóng vết nứt #cơ học nứt đàn hồi tuyến tính

Tài liệu tham khảo

Liebowitz H, Sandhu JS, Lee JD, Menandro FCM (1995) Computational fracture mechanics: Research and application. Eng Fract Mech 50:653–670 Moës Nicolas, Dolbow John, Belytschko Ted (1999) A finite element for crack growth without remeshing. Int J Num Meth Eng 46:131–150 Liu XY, Xiao QZ, Karihaloo BL (2004) XFEM for direct evaluation of mixed mode SIFs in homogenous and bi-materials. Int J Num Meth Eng 59:1103–1118 Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31:38–48 Nguyen Vinh Phu, Rabczuk Timon, Bordas Stephane, Duflot Marc (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simulat 79:763–813 Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous meshless approximations for non-convex bodies by diffraction and transparency. Comput Mech 18:225–235 Krongauz Y, Belytschko T (1998) EFG approximation with discontinous derivatives. Int J Num Meth Eng 41:1215–1233 Belytschko T, Krongauz Y, Fleming M, Organ D, Liu WK (1996) Smoothing and accelerated computations in element-free Galerkin method. J Comput Appl Math 74:111–126 Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Num Meth Eng 40:1483–1504 Belytschko T, Gu L, Lu YY (1994) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534 Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Num Meth Eng 61:2316–2343 Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39:743–760 Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Trans ASME J Appl Mech 4:526–528 Ventura G, Xu JX, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Num Meth Eng 54:923–944 Zi G, Rabczuk T, Wall WA (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40:367–382 Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Method Appl M 196:2777–2799 Rabczuk T, Bordas S, Zi G (2007) A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Comput Mech 40: 473–495 Bordas S, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Eng Fract Mech 75:943–960 Chan SK, Tuba IS, Wilson WK (1970) On the finite element method in linear fracture mechanics. Eng Fract Mech 30:227–231 Watwood VB (1969) The finite element method for prediction of crack behaviour. Nucl Eng Des 11:323–332 Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 10:487–502 Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans ASME J Appl Mech 35:379–386 Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Trans ASME J Appl Mech 47:335–341 Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938 Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28: 251–274 Sethuraman R, Maiti SK (1988) Finite element based computation of strain energy release rate by modified crack closure integral. Eng Fract Mech 30:227–231 Maiti SK (1992) Finite element computation of crack closure integrals and stress intensity factors. Eng Fract Mech 41:339–348 Guiamatsia I, Falzon B, Davies GAO, Iannucci L (2009) Element-free Galerkin modelling of composite damage. Compos Sci Technol 69:2640–2648 Xueping Chang, Jun Liu, Shirong Li (2011) EFG virtual crack closure technique for the determination of stress intensity factor. Adv Mater Res 250–253:3752–3758 Maiti SK, Mukhopadhyay NK, Kakodkar A (1997) Boundary element method based computation of stress intensity factor by modified crack closure integral. Comput Mech 19:203–210 Lancaster P, Salkauskas K (1981) Surfaces generated by moving least square methods. Math Comput 37:141–158 Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl M 139:289–314 QingWen REN, YuWen DONG, TianTang YU (2009) Numerical modeling of concrete hydraulic fracturing with extended finite element method. Sci China E 52:559–565 Singh R, Carter BJ, Wawrzynek PA, Ingraffea AR (1988) Universal crack closure for SIF estimation. Eng Fract Mech 60:133–146 Sethuraman R, Maiti SK (1998) Finite element based computation of strain energy release rate by modified crack closure integral. Eng Fract Mech 30:227–231 Mukhopadhyay NK, Maiti SK, Kakodkar A (1999) Modified crack closure integral based computation of SIFs for thermoelastic problems through BEM. Nucl Eng Des 187:277–290 Walters Matthew C, Paulino Glaucio H, Dodds RH Jr (2005) Interaction integral procedures for 3-D curved cracks including surface tractions. Eng Fract Mech 72:1635–1663 Amit KC, Kim J-H (2008) Interaction integrals for thermal fracture of functionally graded materials. Eng Fract Mech 75:2542–2565 Wilson WK (1969) Combined Mode Fracture Mechanics, PhD Thesis. University of Pittsburgh, PA Zhuang Xiaoying, Heaney Claire, Augarde C (2012) On error control in the element-free Galerkin method. Eng Anal Bound Elem 36:351–360 Gavete L, Cuesta JL, Ruiz A (2002) A numerical comparison of two different approximations of the error in a meshless method. Eur J Mech A-Solid 21:1037–1054 Rabczuk T, Belytschko T, Fernandez-Mendez S, Huerta A (2004) Meshfree methods. In: Encyclopedia of computational mechanics. Wiley, Mississauga Murakami Y (1987) Stress intensity factors handbook. Pergamon Press, Oxford Hellen TK, Cesari F, Maitan A (1982) The application of fracture mechanics in thermally stressed structures. Int J Pres Ves Pip 10:181–204 Prasad NNV, Aliabadi MH, Rooke DP (1994) The dual boundary element method for thermo-elastic crack problems. Int J Fract 66:255–272 Duflot Marc (2008) The extended finite element method in thermo-elastic fracture mechanics. Int J Num Meth Eng 74:827–847 Wang S, Zhang H (2011) Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch Appl Mech 81:1351–1363 Moës N, Cloirec M, Cartraud P, Remacle J (2003) A computational appraoch to handle complex microstructure geometries. Comput Method Appl M 192:3163–3177 Gdoutos E (1993) Fracture mechanics. Kluwer, Boston Muthu N, Maiti SK, Falzon BG, Guiamatsia I (2012) Computation of stress intensity factors in functionally graded materials using partition-of-unity meshfree method. Aeronaut J 116(1186)