Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh sự thay đổi bản sao gen do nhiệt độ gây ra giữa phấn hoa Arabidopsis loại hoang dã và một đột biến nhạy cảm với nhiệt có mang gen bị gạch bỏ của kênh cation nhạy cảm với nucleotide vòng 16 (cngc16)
Tóm tắt
Trong cây có hoa, giao tử đực (phấn) là một trong những tế bào dễ bị tổn thương nhất trước căng thẳng nhiệt độ. Ở Arabidopsis thaliana, một kênh cation nhạy cảm với nucleotide vòng đặc biệt cho phấn hoa 16 (cngc16) là cần thiết cho sự sinh sản của cây dưới điều kiện căng thẳng nhiệt độ. Các cây mang đột biến 'knockout' gen cngc16 gần như vô sinh dưới điều kiện nhiệt độ cao ban ngày và lạnh ban đêm. Để hiểu rõ nguyên nhân, phương pháp RNA-Seq đã được sử dụng để so sánh các bản sao gen của phấn hoa từ loại hoang dã (WT) và cngc16 dưới các điều kiện bình thường và căng thẳng nhiệt (HS). Ở đây chúng tôi cho thấy rằng một phản ứng căng thẳng nhiệt (HSR) trong phấn hoa WT dẫn đến 2102 thay đổi bản sao gen có ý nghĩa thống kê (≥ 2 lần thay đổi với giá trị p đã điều chỉnh ≤0.01), đại diện cho khoảng 15% trong tổng số 14,226 bản sao gen được định lượng. Trong số các thay đổi này, 89 tương ứng với các yếu tố sao chép, với 27 thể hiện sự biểu hiện ưu tiên trong phấn hơn so với mô cây giống. Trái ngược với WT, phấn hoa cngc16 cho thấy có 1.9 lần thay đổi phụ thuộc HS nhiều hơn (tổng cộng 3936, với 2776 sự khác biệt giữa WT và cngc16). Trong một so sánh định lượng trực tiếp giữa các bản sao gen WT và cngc16, số lượng khác biệt có ý nghĩa thống kê tăng từ 21 sự khác biệt có sẵn trước đó trong điều kiện bình thường lên 192 khác biệt dưới HS. Trong số 20 thay đổi phụ thuộc HS trong WT mà có sự khác biệt lớn nhất ở cngc16, một nửa tương ứng với các gen mã hóa protein được dự đoán sẽ ảnh hưởng đến các đặc tính màng tế bào hoặc động lực màng. Kết quả tại đây xác định một sự lập trình lại sâu rộng phụ thuộc vào HS trong khoảng 15% bản sao gen phấn hoa WT và xác định ít nhất 27 sự thay đổi của các yếu tố sao chép có thể cung cấp các đóng góp độc đáo cho phản ứng căng thẳng nhiệt của phấn. Số lượng sự khác biệt về bản sao gen có ý nghĩa thống kê giữa WT và cngc16 đã tăng hơn 9 lần dưới HS, với hầu hết các thay đổi lớn nhất có khả năng tác động cụ thể đến các màng tế bào hoặc động lực màng, và từ đó làm cho phấn hoa cngc16 nhạy cảm cao hơn với HS. Tuy nhiên, tính nhạy cảm cao với HS cũng có thể do số lượng lớn sự khác biệt xuyên suốt bản sao gen có tác động tích lũy lên nhiều con đường tế bào cần thiết cho sự phát triển chóp và thụ tinh. Dù sao, kết quả ở đây hỗ trợ một mô hình trong đó sự lập trình lại chức năng phụ thuộc vào HS của bản sao gen phấn cần một kênh cation nhạy cảm với nucleotide vòng có tính thẩm thấu canxi cụ thể, CNGC16.
Từ khóa
Tài liệu tham khảo
Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot. 2010;61:1959–68.
Young LW, Wilen RW, Bonham-Smith PC. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J of Exp Bot. 2004;55:485–95.
Giorno F, Wolters-Arts M, Mariani C, Rieu I. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants. 2013;2:489–506.
Hedhly A, Hormaza JI, Herrero M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009;14:30–6.
Abiko M, Akibayashi K, Sakata T, Kimura M, Kihara M, Itoh K, Asamizu E, Sato S, Takahashi H, Higashitani A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex Plant Reprod. 2005;18:91–100.
Kim SY, Hong CB, Lee I. Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. J Plant Res. 2001;114:301–7.
Müller F, Rieu I. Acclimation to high temperature during pollen development. Plant Reprod. 2016;29:107–18.
Fragkostefanakis S, Mesihovic A, Hu Y, Schleiff E. Unfolded protein response in pollen development and heat stress tolerance. Plant Reprod. 2016;29:81–91.
Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, Horner HT, Howell SH. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. Plant J. 2016;2:193–204.
Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci. 2012;37:118–25.
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 2017;22:53–65.
Rieu I, Twell D, Firon N. Pollen development at high temperature: from acclimation to collapse. Plant Physiol. 2017;173:1967–76.
Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 2009;50:1911–22.
Zhang X, Xiong H, Liu A, Zhou X, Peng Y, Li Z, Luo G, Tian Z, Chen X. Microarray data uncover the genome-wide gene expression patterns in response to heat stress in rice post-meiosis panicle. J Plant Biol. 2014;57:327–36.
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. RNA-Seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics. 2015;16:959–77.
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot. 2009;60:3891–908.
Bokszczanin KL, Krezdorn N, Fragkostefanakis S, Müller S, Rycak L, Chen Y, Hoffmeier K, Kreutz J, Paupière MJ, Chaturvedi P, Iannacone R, Müller F, Bostan H, Chiusano ML, Scharf K, Rotter B, Schleiff E, Winter P. Identification of novel small ncRNAs in pollen of tomato. BMC Genomics. 2015;16:714–33.
Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress. Dna Res. 2017;24:205–17.
Loraine A, Blakley I, Jagadeesan S, Harper J, Miller G, Firon N. Analysis and visualization of RNA-Seq expression data using RStudio, Bioconductor, and integrated genome browser. Methods Mol Biol. 2015;1284:481–501.
Tunc-Ozdemir M, Tang C, Rahmati Ishka M, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol. 2013;16:1010–20.
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;4:789–804.
Loraine AN, McCormick S, Estrada A, Patel K, Qin P. RNA-Seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol. 2013;162:1092–109.
Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genetics. 2009;5:e1000621.
Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A, Frietsch S, Myers CT, Poulsen LR, Malhó R, Harper JF. Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS One. 2013;8:e55277.
Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A. 2007;104:14531–6.
Umate P. Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice. Plant Signal Behav. 2010;12:1537–42.
Liu XL, Liu L, Niu QK, Xia C, Yang KZ, Li R, Chen LQ, Zhang XQ, Zhou Y, Ye D. Male gametophyte defective 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis. Plant J. 2011;65:647–60.
Dai X, Zhao P. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research. 2011; https://doi.org/10.1093/nar/GKR319.
Stief A, Altmann S, Hoffmann K, Datt Pant B, Scheible W, Bäurle I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell. 2014;26:1792–807.
Li SB, Xie ZZ, Hu CG, Zhang JZ. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016;7:47.
Zhang S, Liu Y, Yu B. New insights into pri-miRNA processing and accumulation in plants. Wiley Interdisciplinary Reviews: RNA. 2015;6:533–45.
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.
Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005;37:501–6.
Wan XL, Zhou Q, Wang YY, Wang WN, Bao MZ, Zhang JW. Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-Seq. Front Plant Sci. 2015;6:519–32.
Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002;130:1143–51.
Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–96.
Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Agarwal M. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biology. 2015;15:9–24.
Vihervaara A, Sergelius C, Vasara J, Blom M, Elsing A, Roos-Mattjus P, Sistonen L. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A. 2013;110:E3388–97.
Nishizawa-Yokoi A, Yoshida E, Yabuta Y, Shigeoka S. Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2. Biosci Biotechnol Biochem. 2009;73:890–5.
Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem. 2008;283:9269–75.
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Curr Opin Plant Biol. 2007;10:310–6.
Qu AL, Ding YF, Jiang Q, Zhu C. Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun. 2013;432:203–7.
Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell. 2013;25:2925–43.
Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum. 2006;126:45–518.
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65:1229–40.
Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC, Van Breusegem F, Mittler R. Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A. 2011;108:1711–6.
Swindell WR. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics. 2006;174:1811–24.
Serivichyaswat P, Ryu HS, Kim W, Kim S, Chung KS, Kim JJ, Ahn JH. Expression of the floral repressor miRNA156 is positively regulated by the AGAMOUS-like proteins AGL15 and AGL18. Mol Cells. 2015;38:259–66.
Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L. CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 2006;142:866–77.
Aarts MGM, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 1997;12:615–23.
Fabrice TN, Vogler H, Draeger C, Munglani G, Gupta S, Herger AG, Knox P, Grossniklaus U, Ringli C. LRX proteins play a crucial role in pollen grain and pollen tube Cell Wall development. Plant Physiol. 2018;3:1981–92.
Wang X, Wang K, Yin G, Liu X, Liu M, Cao N, Duan Y, Gao H, Wang W, Ge W, Wang J, Li R, Guo Y. Pollen-expressed leucine-rich repeat Extensins are essential for pollen germination and growth. Plant Physiol. 2018;3:1993–2006.
Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Valeria G, Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JP, Grossniklaus U. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science. 2017;358:1600–3.
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Letter. 2018;2:233–43.
Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK. Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer Protein-1 (StnsLTP1) against multiple abiotic stresses. Front Plant Sci. 2016;7:1228.
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J. 2014;79:584–96.
McDowell SC, López-Marqués RL, Cohen T, Brown E, Rosenberg A, Palmgren MG, Harper JF. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. Front Plant Sci. 2015;6:197.
Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Zhou R, Li B. A heat-activated calcium-permeable channel-Arabidopsis cyclic nucleotide-gated ion channel 6- is involved in heat shock responses. Plant J. 2012;70:1056–69.
Finka A, Goloubinoff P. The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress Chaperones. 2014;19:83–90.
Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Véry AA, Sanders D, Morris RJ, Oldroyd GE. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science. 2016;352:1102–5.
Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–66.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;15:2114–20.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 2008;36:1009–14.
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;4:357–60.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;16:2078–9.
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;7:923–30.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B. 1995;57:289–300.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods. 2001;4:402–8.
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;6:914–39.
Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiology. 2008;148:1168–81.
