A comparison land-water environment of maximal voluntary isometric contraction during manual muscle testing through surface electromyography

Romualdo Castillo-Lozano1, Antonio Ignacio Cuesta-Vargas2,3
1Faculty at Seville University, Seville, Spain
2Faculty of Health Sciences at Malaga University, Spain
3School Clinical Science at Queensland University of Technology, Brisbane, Australia

Tóm tắt

The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.

Tài liệu tham khảo

Kelly BT, Roskin LA, Kirkendall DT, Speer KP: Shoulder muscle activation during aquatic and land exercises in non-impaired subjects. J Orthop Sports Phys Ther. 2000, 30: 204-210. 10.2519/jospt.2000.30.4.204. Abidin MR, Thacker JG, Becker DG, et al: Hydrofitness devices for strengthening upper extremity muscles. Burn Care Rehabil. 1988, 9: 199-202. Frigo C, Crenna P: Multichannel sEMG in clinical gait analysis: a review and state of the art. Clin Biomech. 2009, 24: 236-245. 10.1016/j.clinbiomech.2008.07.012. Kaneda K, Wakabayashi H, Sato D, Nomura T: Lower extremity muscle activity during different types and speeds of underwater movement. J Physiol Anthropol. 2007, 26 (2): 197-200. 10.2114/jpa2.26.197. Ikai M, Ishii K, Miyashita M: An electromyographic study of swimming. Jap Res J Phys Educ. 1964, 7: 55-87. Clarys JP: Hydrodynamics and electromyography: ergonomics aspects in aquatics. Appl Ergon. 1985, 16: 11-24. 10.1016/0003-6870(85)90143-7. Rouard AH, Billat RP: Influences of sex and level of performance on freestyle stroke: an electromyography and kinematic study. Int J Sports Med. 1990, 11: 150-155. 10.1055/s-2007-1024781. Silvers W, Dolny D: Comparison and reproducibility of sEMG during manual muscle testing on land and in water. J Electromyogr Kinesiol. 2011, 21: 95-101. 10.1016/j.jelekin.2010.05.004. Harrison RA: A quantitative approach to strengthening exercises in the hydrotherapy pool. Physiotherapy. 1980, 66: 60. Prins JH, Hrtung H, Merritt DJ, Blanco RJ, Goebert DA: Effect of aquatic exercise training in persons with poliomyelitis disability. Sport Med Training Rehab. 1994, 5: 29-39. 10.1080/15438629409511999. Frey Law LA, Smidt GL: Underwater forces produced by the hydrotone bell. J Orthop Sports Phys Ther. 1996, 23: 269-271. Cuestionario Internacional de Actividad Física: Formato telefónico corto–últimos 7 días. Para uso con jóvenes y adultos de mediana edad (15–69 años). 2002, USA Spanish version translated 3/2003-Short last 7 days telephone version of the IPAQ: Cuestionario Internacional de Actividad Física, Revised August 2002 Marfell-Jones M, Olds T, Stewart A, Carter L: International standards for anthropometric assessment. 2006, Potchefstroom, South Africa: ISAK Hermens H, Freriks B, SENIAM: The state of the art on sensors and sensor placement procedures for surface electromyography, a proposal for sensor placement procedures.  . Deliverable of the SENIAM Project, 1997. Roessingh Research and Development b.v. ISBN 90-75452-09-8 Perotto AO: Anatomical Guide for the Electromyographer: The Limbs and Trunk. 1994, Springfield: Charlei C Thomas Pöyhönen T, Keskinen KL, Hautala A, Savolainen J, Mälkiä E: Human isometric force production and electromyogram activity of knee extensor muscles in water and on land. Europe J Appl Physiol. 1999, 80: 52-6. 10.1007/s004210050557. Pöyhönen T, Kyröläinen H, Keskinen KL, Hautala A, Savolainen J, Mälkiä E: Electromyographic and kinematic analysis of therapeutic knee exercises under water. Clin Biomech. 2001, 16: 496-504. 10.1016/S0268-0033(01)00031-6. Pöyhönen T, Avela J: Effect of head-out water immersion on neuromuscular function of the plantar flexor muscles. Aviation Space Environment Med. 2002, 73: 1215-8. Norcross MF, Blackburn JT, Goerger BM: Reliability and interpretation of single leg stance and maximum voluntary isometric contraction methods of electromyography normalization. J Electromyogr Kinesiol. 2010, 20 (3): 420-25. 10.1016/j.jelekin.2009.08.003. Rainoldi A, Bullock-Saxton JE, Cavarretta F, Hogan N: Repeatability of maximal voluntary force and of surface EMG variables during voluntary isometric contraction of quadriceps muscles in healthy subjects. J Electromyogr Kinesiol. 2001, 11: 425-38. 10.1016/S1050-6411(01)00022-0. Carvalho RG, Amorim CF, Perácio LH, Coelho HF, Vieira AC, Karl Menzel HJ, Szmuchrowski LA: Analysis of various conditions in order to measure electromyography of isometric contractions in water and on air. J Electromyogr Kinesiol. 2010, 20 (5): 988-93. 10.1016/j.jelekin.2009.12.002. Pinto SS, Liedtke GV, Alberton CL, da Silva EM, Cadore EL, Kruel LF: Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land. Eur J Appl Physiol. 2010, 110 (5): 1075-82. 10.1007/s00421-010-1598-0. doi:10.1007/s00421-010-1598-0 Rainoldi A, Cescon C, Bottin A, Casale R, Caruso I: Surface EMG alterations induced by underwater recording. J Electromyogr Kinesiol. 2004, 14 (3): 325-31. 10.1016/j.jelekin.2003.10.002. Drake RL, Vogl W, Adam W, Mitchell M, Gray H: Anatomy for students. 2009, Churchill Livingstone: Elsevier Veneziano WH, da Rocha AF, Goncalves CA, Pena AG, Carmo JC, Nascimento FA, et al: Confounding factors in water EMG recordings: an approach to a definitive standard. Med Biol Eng Comput. 2006, 44: 348-51. 10.1007/s11517-006-0039-z. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/2052-1847/5/28/prepub