A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses

Imran Amin1,2, Basavaprabhu L. Patil1, R. W. Briddon2, Shahid Mansoor2, Claude Fauquet1
1Donald Danforth Plant Science Center, USA
2Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), ILTAB, Donald, Faisalabad, Pakistan

Tóm tắt

Abstract Background Begomoviruses are single-stranded DNA viruses that cause economically important diseases of many crops throughout the world and induce symptoms in plants, including enations, leaf curling and stunting, that resemble developmental abnormalities. MicroRNAs (miRNAs) are small endogenous RNAs that are involved in a variety of activities, including plant development, signal transduction and protein degradation, as well as response to environmental stress, and pathogen invasion. Results The present study was aimed at understanding the deregulation of miRNAs upon begomovirus infection. Four distinct begomoviruses African cassava mosaic virus (ACMV), Cabbage leaf curl virus (CbLCuV), Tomato yellow leaf curl virus (TYLCV) and Cotton leaf curl Multan virus/Cotton leaf curl betasatellite (CLCuV/CLCuMB), were used in this study. Ten developmental miRNA were studied. N. benthamiana plants were inoculated with begomoviruses and their miRNA profiles were analysed by northern blotting using specific miRNA probes. The levels of most developmental miRNA were increased in N. benthamiana by TYLCV, CLCuMV/CLCuMB and CbLCuV infection with a common pattern despite their diverse genomic components. However, the increased levels of individual miRNAs differed for distinct begomoviruses, reflecting differences in severity of symptom phenotypes. Some of these miRNA were also common to ACMV infection. Conclusions Our results have shown a common pattern of miRNAs accumulation upon begomovirus infection. It was found that begomoviruses generally increase the accumulation of miRNA and thus result in the decreased translation of genes involved in the development of plants. Identification of common miRNAs that are deregulated upon begomovirus infection may provide novel targets for control strategies aimed at developing broad-spectrum resistance.

Từ khóa


Tài liệu tham khảo

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5

Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136: 669-687. 10.1016/j.cell.2009.01.046

Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y

Pasquinelli AE, Ruvkun G: Control and developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 2002, 18: 495-513. 10.1146/annurev.cellbio.18.012502.105832

Llave C, Kasschau KD, Rector MA, Carrington JC: Endogenous and silencing-associated small RNAs in plants. Plant Cell 2002, 14: 1605-1619. 10.1105/tpc.003210

Mette MF, Kanno T, Aufsatz W, Jakowitsch J, van der Winden J, Matzke MA, Matzke AJM: Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J 2002, 21: 461-469. 10.1093/emboj/21.3.461

Park W, Li J, Song R, Messing J, Chen X: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002, 12: 1484-1495. 10.1016/S0960-9822(02)01017-5

Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: MicroRNAs in plants. Genes Dev 2002, 16: 1616-1626. 10.1101/gad.1004402

Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell 2002, 110: 513-520. 10.1016/S0092-8674(02)00863-2

Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002, 297: 2053-2056. 10.1126/science.1076311

Tang G, Reinhart BJ, Bartel DP, Zamore PD: A biochemical framework for RNA silencing in plants. Genes Dev 2003, 17: 49-63. 10.1101/gad.1048103

Baumberger N, Baulcombe DC: Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 2005, 102: 11928-11933. 10.1073/pnas.0505461102

Qi Y, Denli AM, Hannon GJ: Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 2005, 19: 421-428. 10.1016/j.molcel.2005.06.014

Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 2003, 15: 2730-2741. 10.1105/tpc.016238

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell 2005, 8: 517-527. 10.1016/j.devcel.2005.01.018

Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP: A family of microRNAs present in plants and animals. Plant Cell 2006, 18: 3355-3369. 10.1105/tpc.106.044420

Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P: The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 2007, 49: 683-693. 10.1111/j.1365-313X.2006.02983.x

Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D: Geminviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 1999, 18: 71-106. 10.1016/S0735-2689(99)00383-4

Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC: Geminiviridae. In Virus Taxonomy, VIIIth Report of the ICTV. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. London: Elsevier/Academic Press; 2005:301-326.

Varma A, Malathi VG: Emerging geminivirus problems: A serious threat to crop production. Ann Appl Biol 2003, 142: 145-164. 10.1111/j.1744-7348.2003.tb00240.x

Mansoor S, Briddon RW, Zafar Y, Stanley J: Geminivirus disease complexes: an emerging threat. Trends Plant Sci 2003, 8: 128-134. 10.1016/S1360-1385(03)00007-4

Nawaz-ul-Rehman MS, Fauquet CM: Evolution of geminiviruses and their satellites. FEBS Lett 2009, 583: 1825-1832. 10.1016/j.febslet.2009.05.045

Dry I, Krake LR, Rigden JE, Rezaian MA: A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci, USA 1997, 94: 7088--7093. 10.1073/pnas.94.13.7088

Zaitlin M, Hull R: Plant Virus-Host Interaction. Annu Rev Plant Physio 1987, 38: 291-315. 10.1146/annurev.pp.38.060187.001451

Finnegan EJ, Matzke MA: The small RNA world. J Cell Sci 2003, 116: 4689-4693. 10.1242/jcs.00838

Voinnet O: Non-cell autonomous RNA silencing: insights from viral infections. FEBS Lett 2005, 579: 5858. 10.1016/j.febslet.2005.09.039

Dunoyer P, Voinnet O: The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 2005, 8: 415. 10.1016/j.pbi.2005.05.012

Pfeffer S, Voinnet O: Viruses, microRNAs and cancer. Oncogene 2006, 25: 6211-6219. 10.1038/sj.onc.1209915

Roth BM, Pruss GJ, Vance VB: Plant viral suppressors of RNA silencing. Virus Res 2004, 102: 97-108. 10.1016/j.virusres.2004.01.020

Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC: Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 2004, 18: 1179-1186. 10.1101/gad.1201204

Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC: P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 2003, 4: 205-217. 10.1016/S1534-5807(03)00025-X

Vanitharani R, Chellappan P, Pita JS, Fauquet CM: Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 2004, 78: 9487-9498. 10.1128/JVI.78.17.9487-9498.2004

Chellappan P, Vanitharani R, Fauquet CM: MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 2005, 102: 10381-10386. 10.1073/pnas.0504439102

Bazzini AA, Hopp HE, Beachy RN, Asurmendi S: Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci USA 2007, 104: 12157-12162. 10.1073/pnas.0705114104

Baulcombe D: RNA silencing. Trends Biochem Sci 2005, 30: 290-293. 10.1016/j.tibs.2005.04.012

Voinnet O: Induction and suppression of RNA silencing: insights from viral infections. Nature Genet 2005, 6: 206-221. 10.1038/nrg1555

Voinnet O: RNA silencing as a plant immune system against viruses. Trends Genet 2001, 17: 449-459. 10.1016/S0168-9525(01)02367-8

Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y: Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus -Israel. Virology 2007, 358: 159-165. 10.1016/j.virol.2006.08.016

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290: 2105-2110. 10.1126/science.290.5499.2105

Wu G, Poethig RS: Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006, 133: 3539-3547. 10.1242/dev.02521

Mette MF, van der Winden J, Matzke M, Matzke AJ: Short RNAs can identify new candidate transposable element families in Arabidopsis . Plant Physiol 2002, 130: 6-9. 10.1104/pp.007047

Parcy F, Bomblies K, Weigel D: Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 2002, 129: 2519-2527.

Blazquez MA, Soowal LN, Lee I, Weigel D: LEAFY expression and flower initiation in Arabidopsis . Development 1997, 124: 3835-3844.

Naqvi AR, Haq QM, Mukherjee SK: MicroRNA profiling of Tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 2010, 7: 281. 10.1186/1743-422X-7-281

Settlage SB, See RG, Hanley-Bowdoin L: Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 2005, 79: 9885-9895. 10.1128/JVI.79.15.9885-9895.2005

Sabelli PA, Larkins BA: Regulation and function of retinoblastoma-related plant genes. Plant Sci 2009, 177: 540-548. 10.1016/j.plantsci.2009.09.012

Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L: Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 2008, 148: 436-454. 10.1104/pp.108.121038

Guilfoyle TJ, Hagen G: Auxin response factors. J Plant Growth Regul 2001, 10: 281-291. 10.1007/s003440010026

Qazi J, Amin I, Mansoor S, Iqbal MJ, Briddon RW: Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res 2007, 128: 135-139. 10.1016/j.virusres.2007.04.002

Selth LA, Randles JW, Rezaian MA: Host responses to transient expression of individual genes encoded by Tomato leaf curl virus . Mol Plant Microbe In 2004, 17: 27-33. 10.1094/MPMI.2004.17.1.27

Smith SH, McCall SR, Harris JH: Alterations in the auxin levels of resistant and susceptible hosts induced by curly top virus. Phytopathology 1968, 58: 1669-1670.

Baker CC, Sieber P, Wellmer F, Meyerowitz EM: The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 2005, 15: 303-315. 10.1016/j.cub.2005.02.017

Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 2005, 17: 1376-1386. 10.1105/tpc.105.030841

Aida M, Ishida T, Tasaka M: Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 1999, 126: 1563-1570.

Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM: Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 2005, 15: 1899-1911. 10.1016/j.cub.2005.09.052

Takada S, Hibara K, Ishida T, Tasaka M: The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 2001, 128: 1127-1135.

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M: Genes involved in organ separation in Arabidopsis : an analysis of the cup-shaped cotyledon mutant. Plant Cell 1997, 9: 841-857. 10.1105/tpc.9.6.841

Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW: The hypersensitive response to Tomato leaf curl New Delhi virus nuclear shuttle protein is inhibited by transcriptional activator protein. Mol Plant Microbe In 2007, 20: 1581-1588. 10.1094/MPMI-20-12-1581

Mubin M, Amin I, Amrao L, Briddon RW, Mansoor S: The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. Mol Plant Pathol 2010, 11: 245-254. 10.1111/j.1364-3703.2009.00601.x

Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG: Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009, 323: 1053-1057. 10.1126/science.1166386

Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP: MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J 2004, 23: 3356-3364. 10.1038/sj.emboj.7600340

Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H: Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis. Plant Cell Physiol 2006, 47: 853-863. 10.1093/pcp/pcj057

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY: Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis . Plant Cell 2005, 17: 2204-2216. 10.1105/tpc.105.033076

Hardtke CS, Berleth T: The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 1998, 17: 1405-1411. 10.1093/emboj/17.5.1405

Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T: Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 2004, 131: 1089-1100. 10.1242/dev.00925

Mallory AC, Bartel DP, Bartel B: MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 2005, 17: 1360-1375. 10.1105/tpc.105.031716

Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC: ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 1997, 124: 4481-4491.

Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW: Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 2005, 132: 4107-4118. 10.1242/dev.01955

Saeed M, Behjatania SAA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA: A Single complementrary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe In 2005, 18: 7-14. 10.1094/MPMI-18-0007

Saunders K, Norman A, Gucciardo S, Stanley J: The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 2004, 324: 37-47. 10.1016/j.virol.2004.03.018

Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR: Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 2009, 150: 1541-1555. 10.1104/pp.109.139139