A combined method for determining reaction paths, minima, and transition state geometries

Journal of Chemical Physics - Tập 107 Số 2 - Trang 375-384 - 1997
Philippe Y. Ayala1, H. Bernhard Schlegel1
1Wayne State University Department of Chemistry, , Detroit, Michigan 48202

Tóm tắt

Mapping out a reaction mechanism involves optimizing the reactants and products, finding the transition state and following the reaction path connecting them. Transition states can be difficult to locate and reaction paths can be expensive to follow. We describe an efficient algorithm for determining the transition state, minima and reaction path in a single procedure. Starting with an approximate path represented by N points, the path is iteratively relaxed until one of the N points reached the transition state, the end points optimize to minima and the remaining points converged to a second order approximation of the steepest descent path. The method appears to be more reliable than conventional transition state optimization algorithms, and requires only energies and gradients, but not second derivative calculations. The procedure is illustrated by application to a number of model reactions. In most cases, the reaction mechanism can be described well using 5 to 7 points to represent the transition state, the minima and the path. The computational cost of relaxing the path is less than or comparable to the cost of standard techniques for finding the transition state and the minima, determining the transition vector and following the reaction path on both sides of the transition state.

Từ khóa


Tài liệu tham khảo

1996, J. Comp. Chem., 17, 49, 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0

1979, J. Am. Chem. Soc., 101, 2550, 10.1021/ja00504a009

1992, J. Chem. Phys., 96, 2856, 10.1063/1.462844

1992, J. Am. Chem. Soc., 114, 8191, 10.1021/ja00047a032

1993, J. Comput. Chem., 14, 1085, 10.1002/jcc.540140910

1987, Adv. Chem. Phys., 67, 249

1989, Adv. Quantum Chem., 20, 239, 10.1016/S0065-3276(08)60628-0

1984, J. Chem. Phys., 80, 2464, 10.1063/1.446996

1982, J. Comput. Chem., 3, 214, 10.1002/jcc.540030212

1993, Rev. Comp. Chem., 4, 35

1977, Chem. Phys. Lett., 49, 225, 10.1016/0009-2614(77)80574-5

1994, Isr. J. Chem., 33, 449

1990, Int. J. Quantum Chem. Symp., 24, 263

1986, J. Comput. Chem., 7, 385, 10.1002/jcc.540070402

1981, Acc. Chem. Res., 14, 363, 10.1021/ar00072a001

1990, J. Chem. Phys., 94, 5523, 10.1021/j100377a021

1979, Theor. Chim. Acta, 53, 75, 10.1007/BF00547608

1990, J. Chem. Phys., 93, 5634, 10.1063/1.459634

1977, J. Chem. Phys., 66, 2153, 10.1063/1.434152

1985, J. Am. Chem. Soc., 107, 2585, 10.1021/ja00295a002

1991, J. Chem. Phys., 95, 5853, 10.1063/1.461606

1988, Int. J. Quantum Chem. Symp., 22, 183

1987, Chem. Phys. Lett., 139, 375, 10.1016/0009-2614(87)80576-6

1990, Int. J. Quantum Chem. Symp., 24, 167

1990, J. Phys. Chem., 92, 5580, 10.1063/1.458491

1991, J. Phys. Chem., 94, 751, 10.1063/1.460343

1994, J. Chem. Soc. Faraday Trans., 90, 1575, 10.1039/ft9949001575

1985, J. Phys. Chem., 89, 52, 10.1021/j100247a015

1984, Theor. Chim. Acta, 66, 333, 10.1007/BF00554788

1992, J. Phys. Chem., 96, 9768, 10.1021/j100203a036

1970, J. Inst. Math. Appl., 6, 76, 10.1093/imamat/6.1.76

1970, Comput. J., 13, 317, 10.1093/comjnl/13.3.317

1970, Math. Comput., 24, 23, 10.1090/S0025-5718-1970-0258249-6

1970, Math. Comput., 24, 647, 10.1090/S0025-5718-1970-0274029-X

1994, J. Comput. Chem., 15, 1, 10.1002/jcc.540150102

1972, Comput. J., 13, 185

1971, Math. Prog., 1, 26, 10.1007/BF01584071

1986, Theor. Chim. Acta, 69, 281, 10.1007/BF00527705

1993, Int. J. Quantum Chem., 48, 211, 10.1002/qua.560480306

1989, Chem. Phys. Lett., 160, 543, 10.1016/0009-2614(89)80060-0

1996, J. Chem. Phys., 105, 1933, 10.1063/1.472063