A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation
Tóm tắt
DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation. This combined method allows detection of 14 pg (that is, four to five genomic copies) of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng) of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2) and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer. The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.
Tài liệu tham khảo
Ozanne SE, Constancia M: Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab. 2007, 3: 539-546. 10.1038/ncpendmet0531.
Gronbaek K, Hother C, Jones PA: Epigenetic changes in cancer. APMIS. 2007, 115: 1039-1059. 10.1111/j.1600-0463.2007.apm_636.xml.x.
Esteller M: Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007, 16: R50-59. 10.1093/hmg/ddm018.
Chatterjee SK, Zetter BR: Cancer biomarkers: knowing the present and predicting the future. Future Oncol. 2005, 1: 37-50. 10.1517/14796694.1.1.37.
Herman JG: Hypermethylation pathways to colorectal cancer. Implications for prevention and detection. Gastroenterol Clin North Am. 2002, 31: 945-958. 10.1016/S0889-8553(02)00058-4.
Gonzalgo ML, Liang G, Spruck CH, Zingg JM, Rideout WM, Jones PA: Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res. 1997, 57: 594-599.
Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M, Baylin SB, Issa JP: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 1999, 59: 2307-2312.
Yan PS, Efferth T, Chen HL, Lin J, Rödel F, Fuzesi L, Huang TH: Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods. 2002, 27: 162-169. 10.1016/S1046-2023(02)00070-1.
Model F, Osborn N, Ahlquist D, Gruetzmann R, Molnar B, Sipos F, Galamb O, Pilarsky C, Saeger HD, Tulassay Z, Hale K, Mooney S, Lograsso J, Adorjan P, Lesche R, Dessauer A, Kleiber J, Porstmann B, Sledziewski A, Lofton-Day C: Identification and validation of colorectal neoplasia-specific methylation markers for accurate classification of disease. Mol Cancer Res. 2007, 5: 153-163. 10.1158/1541-7786.MCR-06-0034.
Herman JG, Graff JR, Myohänen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996, 93: 9821-9826. 10.1073/pnas.93.18.9821.
Cottrell SE, Distler J, Goodman NS, Mooney SH, Kluth A, Olek A, Schwope I, Tetzner R, Ziebarth H, Berlin K: A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res. 2004, 32: e10-10.1093/nar/gnh008.
Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW: MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000, 28: e32-10.1093/nar/28.8.e32.
Cottrell SE, Laird PW: Sensitive detection of DNA methylation. Ann N Y Acad Sci. 2003, 983: 120-130. 10.1111/j.1749-6632.2003.tb05967.x.
Liang G, Robertson KD, Talmadge C, Sumegi J, Jones PA: The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer Res. 2000, 60: 4907-4912.
Sabbioni S, Miotto E, Veronese A, Satin E, Gramantieri L, Bolondi L, Calin GA, Gafà R, Lanza G, Carli G, Terrazzi E, Feo C, Liboni A, Rullini S, Negrini M: Multigene methylation analysis of gastrointestinal tumors: TPEF emerges as a frequent tumor-specific aberrantly methylated marker that can be detected in peripheral blood. Mol Diagn. 2003, 7: 201-207. 10.2165/00066982-200307030-00010.
Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, Miehlke S, Stolz T, Model F, Roblick UJ, Bruch HP, Koch R, Liebenberg V, Devos T, Song X, Day RH, Sledziewski AZ, Lofton-Day C: Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One. 2008, 3: e3759-10.1371/journal.pone.0003759.
Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, Song X, Lesche R, Liebenberg V, Ebert M, Molnar B, Grützmann R, Pilarsky C, Sledziewski A: DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2007, 54: 414-423. 10.1373/clinchem.2007.095992.
DeVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Vaughn-Steiger K, Grützmann R, Pilarsky C, Habermann JK, Day R, Sledziewski A, Lofton-Day C: Circulating methylated septin 9 in plasma is a biomarker for colorectal cancer. Clin Chem. 2009, 55: 1337-1346. 10.1373/clinchem.2008.115808.
Gonzalgo ML, Jones PA: Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997, 25: 2529-2531. 10.1093/nar/25.12.2529.
Xiong Z, Laird PW: COBRA - a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997, 25: 2532-2534. 10.1093/nar/25.12.2532.
Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005, 37: 853-862. 10.1038/ng1598.
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992, 89: 1827-1831. 10.1073/pnas.89.5.1827.
Wolf SF, Migeon BR: Studies of X chromosome DNA methylation in normal human cells. Nature. 1982, 295: 667-671. 10.1038/295667a0.
Kneip C, Schmidt B, Fleischhacker M, Seegebarth A, Lewin J, Flemming N, Seemann S, Schlegel T, Witt C, Liebenberg V, Dietrich D: A novel method for sensitive and specific detection of DNA methylation biomarkers based on DNA restriction during PCR cycling. Biotechniques. 2009, 47: 737-744. 10.2144/000113208.
Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS: Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA. 2002, 99: 5261-5266. 10.1073/pnas.082089499.
Tetzner R, Dietrich D, Distler J: Control of carry-over contamination of PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res. 2007, 35: e4-10.1093/nar/gkl955.
El-Maarri O: SIRPH analysis: SNuPE with IP-RP-HPLC for quantitative measurements of DNA methylation at specific CpG sites. Methods Mol Biol. 2004, 287: 195-205.