Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một yếu tố nguy cơ bệnh tim mạch ở trẻ em mắc bệnh tim bẩm sinh: phát hiện vòng bụng trên mức bình thường - một nghiên cứu CHAMPS*
Tóm tắt
Trẻ em mắc bệnh tim bẩm sinh (CHD) có nguy cơ cao mắc chứng bệnh tim mạch trong tương lai, nhưng cơ chế tiềm ẩn vẫn chưa rõ ràng. Béo phì vùng bụng (được đo bằng chu vi vòng bụng) là một yếu tố nguy cơ gây bệnh tim mạch khởi phát ở người lớn và có mối liên quan với mức độ hoạt động thể chất thấp, thường thấy ở trẻ em mắc bệnh tim bẩm sinh. Chu vi vòng bụng tăng có thể là một cơ chế làm gia tăng nguy cơ bệnh tim mạch ở trẻ em mắc CHD. Mục tiêu của nghiên cứu này là so sánh chu vi vòng bụng giữa trẻ em có và không có CHD, đồng thời xem xét các yếu tố gây nhiễu tiềm tàng. Chúng tôi giả thuyết rằng trẻ em mắc CHD sẽ có số đo chu vi vòng bụng cao hơn khi kiểm soát các khác biệt về trọng lượng khi sinh, khối lượng không mỡ và hoạt động thể chất. Ba mươi hai trẻ em mắc CHD (10.9 ± 2.6 tuổi; 12 nữ) từ Chương trình Giám sát Hoạt động Tim Mạch Lành Mạnh cho Trẻ em tại Saskatchewan và 23 đối chứng khỏe mạnh (11.7 ± 2.5 tuổi; 10 nữ) được nghiên cứu. Chu vi vòng bụng, hoạt động thể chất (bảng câu hỏi hoạt động thể chất), thành phần cơ thể (khối lượng không mỡ; định lượng hấp thụ tia X đôi) và trọng lượng lúc sinh đã được đánh giá. Phân tích phương sai, thử nghiệm Mann-Whitney U và thử nghiệm t mẫu độc lập được sử dụng để đánh giá sự khác biệt giữa các nhóm (p < 0.05). Trẻ em mắc CHD có chu vi vòng bụng lớn hơn so với đối chứng, kiểm soát cho khối lượng không mỡ, hoạt động thể chất, trọng lượng lúc sinh và giới tính (F (1, 49) = 4.488, p = 0.039). Hoạt động thể chất, khối lượng không mỡ và trọng lượng lúc sinh không có sự khác biệt đáng kể giữa các nhóm (p > 0.05). Những phát hiện của chúng tôi đưa ra một giả thuyết mới - chu vi vòng bụng cao hơn ở trẻ em mắc CHD so với các đối chứng cùng tuổi có thể góp phần làm tăng nguy cơ bệnh tim mạch.
Từ khóa
#bệnh tim bẩm sinh #nguy cơ bệnh tim mạch #chu vi vòng bụng #hoạt động thể chất #khối lượng không mỡTài liệu tham khảo
Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103:1445–50. https://doi.org/10.1016/J.AMJCARD.2009.01.353.
Tutarel O. Acquired heart conditions in adults with congenital heart disease: a growing problem. Heart. 2014;100:1317–21. https://doi.org/10.1136/heartjnl-2014-305575.
Madsen NL, Marino BS, Woo JG, et al. Congenital heart disease with and without cyanotic potential and the long-term risk of diabetes mellitus: a population-based follow-up study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.003076.
Chung ST, Hong B, Patterson L, et al. High overweight and obesity in Fontan patients: a 20-year history. Pediatr Cardiol. 2016;37:192–200. https://doi.org/10.1007/s00246-015-1265-7.
Magnussen CG, Smith KJ, Juonala M. When to prevent cardiovascular disease? As early as possible: lessons from prospective cohorts beginning in childhood. Curr Opin Cardiol. 2013;28:561–8. https://doi.org/10.1097/HCO.0b013e32836428f4.
Palve KS, Pahkala K, Magnussen CG, et al. Association of Physical Activity in childhood and early adulthood with carotid artery elasticity 21 years later: the cardiovascular risk in young Finns study. J Am Heart Assoc. 2014;3:e000594. https://doi.org/10.1161/JAHA.113.000594.
Sakuragi S, Abhayaratna K, Gravenmaker KJ, et al. Influence of adiposity and physical activity on arterial stiffness in healthy children the lifestyle of our kids study. Hypertension. 2009;53:611–6. https://doi.org/10.1161/HYPERTENSIONAHA.108.123364.
Gralla MH, McDonald SM, Breneman C, et al. Associations of objectively measured vigorous physical activity with body composition, cardiorespiratory fitness, and Cardiometabolic health in youth: a review. Am J Lifestyle Med. 2016. https://doi.org/10.1177/1559827615624417.
Andersen LB, Harro M, Sardinha LB, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European youth heart study). Lancet. 2006;368:299–304. https://doi.org/10.1016/S0140-6736(06)69075-2.
Sherar LB, Eisenmann JC, Chilibeck PD, et al. Relationship between trajectories of trunk fat mass development in adolescence and cardiometabolic risk in young adulthood. Obesity (Silver Spring). 2011;19:1699–706. https://doi.org/10.1038/oby.2010.340.
Moola F, Faulkner GEJ, Kirsh JA, Kilburn J. Physical activity and sport participation in youth with congenital heart disease: perceptions of children and parents. Adapt Phys Act Q. 2008;25:49–70.
Moola F, McCrindle BW, Longmuir PE. Physical activity participation in youth with surgically corrected congenital heart disease: devising guidelines so Johnny can participate. Paediatr Child Health. 2009;14:167–70. https://doi.org/10.1093/pch/14.3.167.
Ray TD, Green A, Henry K. Physical activity and obesity in children with congenital cardiac disease. Cardiol Young. 2011;21:603–7. https://doi.org/10.1017/S1047951111000540.
Pasquali SK, Marino BS, Pudusseri A, et al. Risk factors and comorbidities associated with obesity in children and adolescents after the arterial switch operation and Ross procedure. Am Heart J. 2009;158:473–9. https://doi.org/10.1016/j.ahj.2009.06.019.
Norozi K, Wessel A, Alpers V, et al. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol. 2006. https://doi.org/10.1016/j.amjcard.2005.10.065.
Boyes NG, Stickland MK, Fusnik S, et al. Physical activity modulates arterial stiffness in children with congenital heart disease: a CHAMPS cohort study*. Congenit Heart Dis. 2018. https://doi.org/10.1111/chd.12614.
Jung U, Choi M-S. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:6184–223. https://doi.org/10.3390/ijms15046184.
Aballay LR, Eynard AR, Díaz Mdel P, et al. Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutr Rev. 2013;71:168–79. https://doi.org/10.1111/j.1753-4887.2012.00533.x.
Ong KK, Dunger DB. Birth weight, infant growth and insulin resistance. Eur J Endocrinol. 2004;151(Suppl):U131–9.
Gardner DSL, Hosking J, Metcalf BS, et al. Contribution of early weight gain to childhood overweight and metabolic health: a longitudinal study (EarlyBird 36). Pediatrics. 2009;123:e67–73. https://doi.org/10.1542/peds.2008-1292.
Pandit D, Khadilkar A, Chiplonkar S, et al. Arterial stiffness in obese children: role of adiposity and physical activity. Indian J Endocrinol Metab. 2014;18:70–6. https://doi.org/10.4103/2230-8210.126565.
Kramer HH, Trampisch HJ, Rammos S, Giese A. Birth weight of children with congenital heart disease. Eur J Pediatr. 1990;149:752–7. https://doi.org/10.1007/BF01957272.
Schuurmans FM, Pulles-Heintzberger CF, Gerver WJ, et al. Long-term growth of children with congenital heart disease: a retrospective study. Acta Paediatr. 2007;87:1250–5. https://doi.org/10.1111/j.1651-2227.1998.tb00947.x.
Voss C, Duncombe SL, Dean PH, et al. Physical activity and sedentary behavior in children with congenital heart disease. J Am Heart Assoc. 2017;6. https://doi.org/10.1161/JAHA.116.004665.
Currie KD, Martin AA, Millar PJ, et al. Vascular and autonomic function in preschool-aged children with congenital heart disease. Congenit Heart Dis. 2012;7:289–97. https://doi.org/10.1111/j.1747-0803.2012.00664.x.
Haapala EA, Lankhorst K, De Groot J, et al. The associations of cardiorespiratory fitness, adiposity and sports participation with arterial stiffness in youth with chronic diseases or physical disabilities. Eur J Prev Cardiol. 2017;24:1102–11. https://doi.org/10.1177/2047487317702792.
Fowles J, Humber K, Lane K, et al. Canadian Society for Exercise Physiology - physical activity training for health (CSEP-PATH). Ottawa: Canadian Society for Exercise Physiology; 2013.
Kowalski KC, Crocker PRE, Faulkner RA. Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci. 1997;9:174–86.
Copeland JL, Kowalski KC, Donen RM, Tremblay MS. Convergent validity of the physical activity questionnaire for adults: the new member of the PAQ family. J Phys Act Health. 2005;2:216–29.
Kowalski KC, Crocker PRE, Kowalski NP. Convergent validity of the physical activity questionnaire for adolescents. Pediatr Exerc Sci. 1997;9:342–52.
Dulloo A, Jacquet J, Seydoux J, Montani J-P. The thrifty “catch-up fat” phenotype: its impact on insulin sensitivity during growth trajectories to obesity and metabolic syndrome weight dynamics and risks for diseases. Int J Obes. 2006;30:23–35. https://doi.org/10.1038/sj.ijo.0803516.
Ekelund U, Luan J, Sherar LB, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA J Am Med Assoc. 2012;307:704–12. https://doi.org/10.1001/jama.2012.156.
Bowen L, Taylor AE, Sullivan R, et al. Associations between diet, physical activity and body fat distribution: a cross sectional study in an Indian population. BMC Public Health. 2015;15:281. https://doi.org/10.1186/s12889-015-1550-7.
Freedman DS, Wang J, Maynard LM, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes. 2005. https://doi.org/10.1038/sj.ijo.0802735.
Ong KK. Size at birth, postnatal growth and risk of obesity. Horm Res. 2006;65:65–9. https://doi.org/10.1159/000091508.
Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–94. https://doi.org/10.1111/j.2047-6310.2012.Y00064.x.
Perticone F, Ceravolo R, Candigliota M, et al. Obesity and body fat distribution induce endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes. 2001. https://doi.org/10.2337/diabetes.50.1.159.
Rizzo NS, Ruiz JR, Oja L, et al. Associations between physical activity, body fat, and insulin resistance in adolescents. The European youth heart study. Ann Nutr Metab. 2007;51:341. https://doi.org/10.1016/S0084-3741(08)79230-8.
Khokhar A, Chin V, Perez-Colon S, et al. Differences between metabolically healthy vs unhealthy obese children and adolescents. J Natl Med Assoc. 2017. https://doi.org/10.1016/j.jnma.2017.02.008.
Zaqout M, Vandekerckhove K, Michels N, et al. Physical fitness and metabolic syndrome in children with repaired congenital heart disease compared with healthy children. J Pediatr. 2017;191:125–32. https://doi.org/10.1016/j.jpeds.2017.08.058.
Veijalainen A, Tompuri T, Haapala EA, et al. Associations of cardiorespiratory fitness, physical activity, and adiposity with arterial stiffness in children. Scand J Med Sci Sports. 2016;26:943–50. https://doi.org/10.1111/sms.12523.
Stone N, Obeid J, Dillenburg R, et al. Objectively measured physical activity levels of young children with congenital heart disease. Cardiol Young. 2015;25:520–5. https://doi.org/10.1017/S1047951114000298.
Takken T, Giardini A, Reybrouck T, et al. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the exercise, basic & translational research section of the European Association of Cardiovascular Preve. Eur J Prev Cardiol. 2012;19:1034–65. https://doi.org/10.1177/1741826711420000.
Sherar L, Cumming S. Physical activity, physical fitness, and health. In: Armstrong N, Van Mechelen W, editors. Children’s sport and exercise medicine, Third. Oxford: Oxford University Press; 2017. p. 225–38.
Carson V, Rinaldi RL, Torrance B, et al. Vigorous physical activity and longitudinal associations with cardiometabolic risk factors in youth. Int J Obes. 2014;38:16–21. https://doi.org/10.1038/ijo.2013.135.
Torowicz D, Irving SY, Hanlon AL, et al. Infant temperament and parental stress in 3-month-old infants after surgery for complex congenital heart disease. J Dev Behav Pediatr. 2010;31:202–8. https://doi.org/10.1097/DBP.0b013e3181d3deaa.
Apers S, Rassart J, Luyckx K, et al. Bringing Antonovsky’s salutogenic theory to life: a qualitative inquiry into the experiences of young people with congenital heart disease. Int J Qual Stud Health Well-being. 2016;11:29346. https://doi.org/10.3402/qhw.v11.29346.
Yam KY, Naninck EFG, Abbink MR, et al. Exposure to chronic early-life stress lastingly alters the adipose tissue, the leptin system and changes the vulnerability to western-style diet later in life in mice. Psychoneuroendocrinology. 2017;77:186–95. https://doi.org/10.1016/J.PSYNEUEN.2016.12.012.
Tchernof A, Després J-P. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404. https://doi.org/10.1152/physrev.00033.2011.
Zorzanelli L, Maeda N, Clavé M, et al. Relation of cytokine profile to clinical and hemodynamic features in young patients with congenital heart disease and pulmonary hypertension. Am J Cardiol. 2017;119:119–25. https://doi.org/10.1016/J.AMJCARD.2016.09.020.
Puterman E, Prather AA, Epel ES, et al. Exercise mitigates cumulative associations between stress and BMI in girls age 10 to 19. Health Psychol. 2016;35:191–4. https://doi.org/10.1037/hea0000258.
Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev. 2012;92:157–91. https://doi.org/10.1152/physrev.00012.2011.
Tinius RA, Cahill AG, Cade WT. Low-intensity physical activity is associated with lower maternal systemic inflammation during late pregnancy. J Obes Weight Loss Ther. 2017:7. https://doi.org/10.4172/2165-7904.1000343.
Després J-P. Abdominal obesity and cardiovascular disease: is inflammation the missing link? Can J Cardiol. 2012;28:642–52. https://doi.org/10.1016/j.cjca.2012.06.004.
Arvidsson D, Slinde F, Hulthén L, et al. Physical activity, sports participation and aerobic fitness in children who have undergone surgery for congenital heart defects. Acta Paediatr 2009;98:1475–82. https://doi.org/10.1111/j.1651-2227.2009.01369.x.
Dulfer K, Helbing WA, Duppen N, Utens EMWJ. Associations between exercise capacity, physical activity, and psychosocial functioning in children with congenital heart disease: a systematic review. Eur J Prev Cardiol. 2014;21:1200–15. https://doi.org/10.1177/2047487313494030.
Harris KC, Voss C, Rankin K, et al. Modifiable cardiovascular risk factors in adolescents and adults with congenital heart disease. Congenit Heart Dis. 2018;13:563–70. https://doi.org/10.1111/chd.12612.
Scicchitano P, Cameli M, Maiello M, et al. Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J Funct Foods. 2014;6:11–32. https://doi.org/10.1016/j.jff.2013.12.006.
Corrigan FE, Kelli HM, Dhindsa DS, et al. Changes in truncal obesity and fat distribution predict arterial health. J Clin Lipidol. 2017;11:1354–1360.e3. https://doi.org/10.1016/j.jacl.2017.08.013.
Dencker M, Wollmer P, Karlsson MK, et al. Body fat, abdominal fat and body fat distribution related to cardiovascular risk factors in prepubertal children. Acta Paediatr. 2012;101:852–7. https://doi.org/10.1111/j.1651-2227.2012.02681.x.
Mehta SK, Richards N, Lorber R, Rosenthal GL. Abdominal obesity, waist circumference, body mass index, and echocardiographic measures in children and adolescents. Congenit Heart Dis. 2009;4:338–47. https://doi.org/10.1111/j.1747-0803.2009.00330.x.
Mivelaz Y, Leung MT, Zadorsky MT, et al. Noninvasive assessment of vascular function in postoperative cardiovascular disease (Coarctation of the aorta, tetralogy of Fallot, and transposition of the great arteries). Am J Cardiol. 2016;118:597–602. https://doi.org/10.1016/j.amjcard.2016.05.055.
Voges I, Jerosch-Herold M, Hedderich J, et al. Implications of early aortic stiffening in patients with transposition of the great arteries after arterial switch operation. Circ Cardiovasc Imaging. 2013;6:245–53. https://doi.org/10.1161/CIRCIMAGING.112.000131.