A bound on the Wasserstein-2 distance between linear combinations of independent random variables
Tài liệu tham khảo
B. Arras, E. Azmoodeh, G. Poly, Y. Swan, Stein characterizations for linear combinations of gamma random variables, 2017. ArXiv preprint arXiv:1709.01161.
Azmoodeh, 2014, Fourth moment theorems for Markov diffusion generators, J. Funct. Anal., 266, 2341, 10.1016/j.jfa.2013.10.014
Azmoodeh, 2014, Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach, 339
Bai, 2017, Behavior of the generalized Rosenblatt process at extreme critical exponent values, Ann. Probab., 45, 1278, 10.1214/15-AOP1087
V. Bally, L. Caramellino, Total variation distance between stochastic polynomials and invariance principles, 2017. ArXiv preprint arXiv:1705.05194.
Borovkov, 1984, On an inequality and a related characterization of the normal distribution, Theory Probab. Appl., 28, 219, 10.1137/1128021
Cacoullos, 1989, Characterizations of distributions by variance bounds, Statist. Probab. Lett., 7, 351, 10.1016/0167-7152(89)90050-3
Caravenna, 2017, Universality in marginally relevant disordered systems ann, Appl. Probab., 27, 3050
Chen, 2010
Eden, 2015, Nourdin-peccati analysis on Wiener and Wiener-Poisson space for general distributions, Stochastic Process. Appl., 125, 182, 10.1016/j.spa.2014.09.001
Eichelsbacher, 2015, Malliavin-Stein method for variance-gamma approximation on Wiener space, Electron. J. Probab., 20, 1
Gaunt, 2013
Gaunt, 2014, Variance-gamma approximation via Stein’s method, Electron. J. Probab., 19, 1
Gaunt, 2018, Products of normal, beta and gamma random variables: Stein characterisations and distributional theory, Braz. J. Probab. Stat., 32, 437, 10.1214/16-BJPS349
Gaunt, 2017, On Stein’s method for products of normal random variables and zero bias couplings, Bernoulli, 23, 3311, 10.3150/16-BEJ848
R. Gaunt, G. Mijoule, Y. Swan, Stein operators for product distributions, with applications, 2016. ArXiv preprint arXiv:1604.06819.
Götze, 2005, Asymptotic expansions in non-central limit theorems for quadratic forms, J. Theoret. Probab., 18, 757, 10.1007/s10959-005-7525-3
Janson, 1997
Klaassen, 1985, On an inequality of Chernoff, Ann. Probab., 13, 966, 10.1214/aop/1176992917
C. Krein, Weak convergence on Wiener space: targeting the first two chaoses, 2017. ArXiv preprint arXiv:1701.06766.
Kusuoka, 2012, Stein’s method for invariant measures of diffusions via Malliavin calculus, Stochastic Process. Appl., 122, 1627, 10.1016/j.spa.2012.02.005
Ledoux, 2012, Chaos of a Markov operator and the fourth moment condition, Ann. Probab., 40, 2439, 10.1214/11-AOP685
Ley, 2017, Stein’s method for comparison of univariate distributions, Probab. Surv., 14, 1, 10.1214/16-PS278
Lukacs, 1970
Madan, 1998, The variance gamma process and option pricing, Eur. Finance. Rev, 2, 79, 10.1023/A:1009703431535
Mossel, 2010, Noise stability of functions with low influences: invariance and optimality, Ann. Math., 171, 295, 10.4007/annals.2010.171.295
Nourdin, 2009, Stein’s method on Wiener chaos, Probab. Theory Relat. Fields, 145, 75, 10.1007/s00440-008-0162-x
Nourdin, 2012
Nourdin, 2015, The optimal fourth moment theorem, Proc. Amer. Math. Soc., 143, 3123, 10.1090/S0002-9939-2015-12417-3
Nourdin, 2012, Convergence in law in the second Wiener/Wigner chaos, Electron. Commun. Probab., 17, 1
Nualart, 2005, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab., 33, 177, 10.1214/009117904000000621
Peköz, 2013, Degree asymptotics with rates for preferential attachment random graphs, Ann. Appl. Probab., 23, 1188, 10.1214/12-AAP868
Rotar’, 1973, Some limit theorems for polynomials of second degree, Theory Probab. Appl., 18, 499, 10.1137/1118064
Serfling, 1980
Sevast’yanov, 1961, A class of limit distribution for quadratic forms of normal stochastic variables, Theory Probab. Appl., 6, 337
Stein, 1986, Approximate computation of expectations, vol. 7
Venter, 1973, Asymptotic distributions for quadratic forms with applications to tests of fit, Ann. Statist., 1, 380
Villani, 2009, Optimal transport. Old and new, 10.1007/978-3-540-71050-9_28