A blood‐based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial

Gene L. Bowman1,2,3, Hiroko H. Dodge2,4, Sophie Guyonnet5,6, Nina Zhou7, Juliana Donohue1, Aline Bichsel1, Jeroen Schmitt8, Claudie Hooper5, Tamas Bartfai9, Sandrine Andrieu6,10, Bruno Vellas5,6
1Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
2Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
3Department of Medicine, Harvard Medical School, Boston, MA, USA
4Department of Neurology and Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, MI, USA
5Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France
6LEASP UMR1027 INSERM, University Paul Sabatier, France
7Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
8Clinical Development Unit, Nestle Research, Lausanne, Switzerland
9Department of Neurochemistry, Stockholm University, Sweden
10Department of Public Health, CHU de Toulouse, Toulouse, France

Tóm tắt

AbstractIntroductionMultinutrient approaches may produce more robust effects on brain health through interactive qualities. We hypothesized that a blood‐based nutritional risk index (NRI) including three biomarkers of diet quality can explain cognitive trajectories in the multidomain Alzheimer prevention trial (MAPT) over 3‐years.MethodsThe NRI included erythrocyte n‐3 polyunsaturated fatty acids (n‐3 PUFA 22:6n‐3 and 20:5n‐3), serum 25‐hydroxyvitamin D, and plasma homocysteine. The NRI scores reflect the number of nutritional risk factors (0–3). The primary outcome in MAPT was a cognitive composite Z score within each participant that was fit with linear mixed‐effects models.ResultsEighty percent had at lease one nutritional risk factor for cognitive decline (NRI ≥1: 573 of 712). Participants presenting without nutritional risk factors (NRI=0) exhibited cognitive enhancement (β = 0.03 standard units [SU]/y), whereas each NRI point increase corresponded to an incremental acceleration in rates of cognitive decline (NRI‐1: β = −0.04 SU/y, P = .03; NRI‐2: β = −0.08 SU/y, P < .0001; and NRI‐3: β = −0.11 SU/y, P = .0008).DiscussionIdentifying and addressing these well‐established nutritional risk factors may reduce age‐related cognitive decline in older adults; an observation that warrants further study.

Tài liệu tham khảo

10.1056/NEJMoa050151 10.1001/archinte.166.22.2462 10.3945/ajcn.2008.26404 10.1001/jama.300.15.1774 10.1001/jama.2010.1510 10.1016/S0140-6736(07)60109-3 10.1371/journal.pone.0012244 10.1111/j.1551-2916.2011.04873.x 10.3233/JAD-150777 10.1056/NEJMoa1811403 1989, Diet and health: implications for reducing chronic disease risk 10.1024/0300-9831.74.6.387 10.1056/NEJM199704173361601 10.3945/ajcn.114.103283 10.1212/WNL.0b013e3182436598 10.1016/j.jalz.2017.01.025 10.1016/j.neuroimage.2018.12.007 10.3390/nu11040735 10.1159/000071002 10.1016/j.jalz.2018.06.2857 10.1186/s13195-017-0270-x 10.1016/j.jalz.2018.01.017 10.1186/1742-2094-9-244 10.3233/JAD-140411 10.1186/s12974-015-0370-0 10.1016/j.neuroscience.2016.01.041 10.1515/revneuro-2015-0069 10.1007/s12035-017-0839-1 Vellas B., 2014, MAPT study: a multidomain approach for preventing Alzheimer's disease: design and baseline data, J Prev Alzheimers Dis, 1, 13 Rouch L., 2017, Effectiveness of a standardized and specific follow‐up in memory centers in patients with Alzheimer's disease, Curr Alzheimer Res, 14, 255, 10.2174/1567205013666161108114850 10.1016/j.jalz.2009.01.008 10.1212/WNL.38.6.900 Wechsler D., 1981, Wechsler Adult Intelligence Scale—Revised Cardebat D., 1990, Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level, Acta Neurol Belg, 90, 207 10.1007/s11745-009-3376-5 10.1016/j.annepidem.2007.12.001 10.1373/clinchem.2005.053421 10.1097/WAD.0b013e3181f333d6 10.3389/fnagi.2013.00092 10.1161/JAHA.113.000513 10.1111/nure.12071 10.1017/S1368980011000565 10.1001/jamaneurol.2015.2115 10.1111/jgs.15012 10.1093/jn/133.11.3636 10.1212/WNL.0b013e318249f6a9 10.1007/s12603-017-0957-5 10.1210/jc.2010-2704 10.1056/NEJMoa011613 10.1016/j.neuroscience.2006.01.021 10.1111/j.1440-1681.2006.04467.x 10.1523/JNEUROSCI.3593-07.2007 10.1523/JNEUROSCI.4225-04.2005 10.1016/j.neuron.2004.08.013 10.1046/j.1471-4159.2000.0752563.x 10.3945/ajcn.111.025924 10.1016/j.jalz.2016.06.1517 10.1093/gerona/gly125 10.1073/pnas.0805350105 10.1159/000437098 10.1016/j.neurobiolaging.2006.08.003 10.1093/jn/133.11.3386 10.1096/fj.14-251736 10.1371/journal.pone.0012538 10.1016/j.jalz.2017.03.003 10.1093/ajcn/69.3.482 10.1093/ajcn/84.5.989 10.1016/j.maturitas.2017.10.005 10.1093/ajcn/77.4.803 10.1016/j.plipres.2016.05.001 10.1146/annurev-nutr-071715-050947