A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fischer, K., Lewandowski, D., Marijke van den Berg, H. & Janssen, M.P. Validity of assessing inhibitor development in haemophilia PUPs using registry data: the EUHASS project. Haemophilia 18, e241–e246 (2012).
Oldenburg, J., El-Maarri, O. & Schwaab, R. Inhibitor development in correlation to factor VIII genotypes. Haemophilia 8 (suppl. 2), 23–29 (2002).
Shi, Q., Kuether, E.L., Schroeder, J.A., Fahs, S.A. & Montgomery, R.R. Intravascular recovery of VWF and FVIII following intraperitoneal injection and differences from intravenous and subcutaneous injection in mice. Haemophilia 18, 639–646 (2012).
Björkman, S. et al. Population pharmacokinetics of recombinant factor VIII: the relationships of pharmacokinetics to age and body weight. Blood 119, 612–618 (2012).
Stonebraker, J.S., Bolton-Maggs, P.H., Soucie, J.M., Walker, I. & Brooker, M. A study of variations in the reported haemophilia A prevalence around the world. Haemophilia 16, 20–32 (2010).
Geraghty, S. et al. Practice patterns in haemophilia A therapy—global progress towards optimal care. Haemophilia 12, 75–81 (2006).
Manco-Johnson, M.J. et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N. Engl. J. Med. 357, 535–544 (2007).
Young, G. et al. When should prophylaxis therapy in inhibitor patients be considered? Haemophilia 17, e849–e857 (2011).
Astermark, J. et al. A randomized comparison of bypassing agents in hemophilia complicated by an inhibitor: the FEIBA NovoSeven Comparative (FENOC) Study. Blood 109, 546–551 (2007).
Leissinger, C. et al. Anti-inhibitor coagulant complex prophylaxis in hemophilia with inhibitors. N. Engl. J. Med. 365, 1684–1692 (2011).
Hay, C.R. & DiMichele, D.M. The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood 119, 1335–1344 (2012).
Ragni, M.V. et al. Survey of current prophylaxis practices and bleeding characteristics of children with severe haemophilia A in US haemophilia treatment centres. Haemophilia 18, 63–68 (2012).
Lenting, P.J., Donath, M.J., van Mourik, J.A. & Mertens, K. Identification of a binding site for blood coagulation factor IXa on the light chain of human factor VIII. J. Biol. Chem. 269, 7150–7155 (1994).
Fay, P.J. & Koshibu, K. The A2 subunit of factor VIIIa modulates the active site of factor IXa. J. Biol. Chem. 273, 19049–19054 (1998).
Lapan, K.A. & Fay, P.J. Localization of a factor X interactive site in the A1 subunit of factor VIIIa. J. Biol. Chem. 272, 2082–2088 (1997).
Liu, Z. et al. A potent erythropoietin-mimicking human antibody interacts through a novel binding site. Blood 110, 2408–2413 (2007).
Mayorov, A.V. et al. Catalytic antibody degradation of ghrelin increases whole-body metabolic rate and reduces refeeding in fasting mice. Proc. Natl. Acad. Sci. USA 105, 17487–17492 (2008).
Bhaskar, V. et al. A fully human, allosteric monoclonal antibody that activates the insulin receptor and improves glycemic control. Diabetes 61, 1263–1271 (2012).
Beck, A., Wurch, T., Bailly, C. & Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352 (2010).
Baeuerle, P.A., Kufer, P. & Bargou, R. BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr. Opin. Mol. Ther. 11, 22–30 (2009).
Jackman, J. et al. Development of a two-part strategy to identify a therapeutic human bispecific antibody that inhibits IgE receptor signaling. J. Biol. Chem. 285, 20850–20859 (2010).
Shen, B.W. et al. The tertiary structure and domain organization of coagulation factor VIII. Blood 111, 1240–1247 (2008).
Saphire, E.O. et al. Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 319, 9–18 (2002).
Baker, M.P., Reynolds, H.M., Lumicisi, B. & Bryson, C.J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1, 314–322 (2010).
Wang, W., Wang, E.Q. & Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84, 548–558 (2008).
Martens, T. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144–6152 (2006).
Shima, M., Matsumoto, T. & Ogiwara, K. New assays for monitoring haemophilia treatment. Haemophilia 14 (suppl. 3), 83–92 (2008).
Shetty, S., Bhave, M. & Ghosh, K. Acquired hemophilia A: diagnosis, aetiology, clinical spectrum and treatment options. Autoimmun. Rev. 10, 311–316 (2011).
Lin, Y.S. et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J. Pharmacol. Exp. Ther. 288, 371–378 (1999).
Benincosa, L.J. et al. Pharmacokinetics and pharmacodynamics of a humanized monoclonal antibody to factor IX in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 292, 810–816 (2000).
Deng, R. et al. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs 3, 61–66 (2011).
Powell, J.S. et al. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood 119, 3031–3037 (2012).
High, K.A. Gene therapy for haemophilia: a long and winding road. J. Thromb. Haemost. 9 (suppl. 1), 2–11 (2011).
Harding, F.A., Stickler, M.M., Razo, J. & DuBridge, R.B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2, 256–265 (2010).
Merchant, A.M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).
Igawa, T. et al. Engineering the variable region of therapeutic IgG antibodies. MAbs 3, 243–252 (2011).
Igawa, T. et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng. Des. Sel. 23, 385–392 (2010).
Bloom, J.W., Madanat, M.S., Marriott, D., Wong, T. & Chan, S.Y. Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci. 6, 407–415 (1997).
Okuda, M. & Yamamoto, Y. Usefulness of synthetic phospholipid in measurement of activated partial thromboplastin time: a new preparation procedure to reduce batch difference. Clin. Lab. Haematol. 26, 215–223 (2004).
Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).
Healey, J.F., Lubin, I.M. & Lollar, P. The cDNA and derived amino acid sequence of porcine factor VIII. Blood 88, 4209–4214 (1996).
Yonemura, H. et al. Efficient production of recombinant human factor VIII by co-expression of the heavy and light chains. Protein Eng. 6, 669–674 (1993).