Một Tổng Quan Hệ Thống Về Các Đường Xuất Trực Tiếp Từ Tiểu Não Đến Não Thân Và Đồi Thị Ở Động Vật Có Vú

Manuele Novello1, Laurens W. J. Bosman1, Chris I. De Zeeuw1
1Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands

Tóm tắt

Tóm tắt

Tiểu não tham gia vào nhiều chức năng vận động, tự động và nhận thức, và các nhiệm vụ mới có sự đóng góp của tiểu não liên tục được khám phá. Đồng thời, nhận thức của chúng ta về sự phân chia chức năng trong tiểu não đã có những tiến bộ rõ rệt. Hơn nữa, các nghiên cứu về các con đường xuất từ tiểu não đã có một sự hồi sinh nhờ sự phát triển của các kỹ thuật theo dõi virus. Để tạo ra cái nhìn tổng quan về trạng thái hiện tại của sự hiểu biết của chúng ta về các đường xuất từ tiểu não, chúng tôi đã thực hiện một lượt tổng quan hệ thống tất cả các nghiên cứu về những dự án đơn synap từ tiểu não đến não thân và đồi thị ở động vật có vú. Điều này đã cho thấy rằng các dự án quan trọng từ tiểu não đến các nhân vận động, vỏ não và hạch nền chủ yếu có tính chất hai hoặc đa synap, thay vì đơn synap. Đặc biệt, hầu hết các khu vực đích nhận được thông tin từ tiểu não từ cả ba nhân tiểu não, cho thấy sự hội tụ của thông tin tiểu não ở cấp độ xuất. Nhìn chung, có vẻ như có một mức độ đồng thuận cao giữa các nghiên cứu trên các loài khác nhau cũng như về việc sử dụng các loại dấu vết thần kinh khác nhau, tạo nên bức tranh nổi bật về các khu vực xuất của tiểu não. Cuối cùng, chúng tôi thảo luận về cách mà mạng lưới xuất tiểu não này bị ảnh hưởng bởi một loạt các bệnh và hội chứng, trong đó có cả những bệnh không liên quan đến tiểu não cũng ảnh hưởng đến các khu vực xuất của tiểu não.

Từ khóa


Tài liệu tham khảo

Brochu G, Maler L, Hawkes R. Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.

Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW, Ruigrok TJ, Hoebeek FE, De Zeeuw CI, Schonewille M. Cerebellar modules operate at different frequencies. Elife. 2014;3:e02536. https://doi.org/10.7554/eLife.02536.

Cerminara NL, Lang EJ, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16:79–93. https://doi.org/10.1038/nrn3886.

De Zeeuw CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci. 2021;22:92–110. https://doi.org/10.1038/s41583-020-00392-x.

King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22:1371–8. https://doi.org/10.1038/s41593-019-0436-x.

Tsutsumi S, Hidaka N, Isomura Y, Matsuzaki M, Sakimura K, Kano M and Kitamura K. Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. eLife 2019: 8. https://doi.org/10.7554/eLife.47021

Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]. Cerebellum. 2018;17:654–82. https://doi.org/10.1007/s12311-018-0952-3.

Roostaei T, Nazeri A, Sahraian MA, Minagar A. The human cerebellum: a review of physiologic neuroanatomy. Neurol Clin. 2014;32:859–69. https://doi.org/10.1016/j.ncl.2014.07.013.

Wang X, Yu SY, Ren Z, De Zeeuw CI, Gao Z. A FN-MdV pathway and its role in cerebellar multimodular control of sensorimotor behavior. Nat Commun. 2020;11:6050. https://doi.org/10.1038/s41467-020-19960-x.

Ju C, Bosman LWJ, Hoogland TM, Velauthapillai A, Murugesan P, Warnaar P, van Genderen RM, Negrello M, De Zeeuw CI. Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control. J Physiol. 2019;597:2483–514. https://doi.org/10.1113/jp277413.

Heiney SA, Wojaczynski GJ, Medina JF. Action-based organization of a cerebellar module specialized for predictive control of multiple body parts. Neuron. 2021;109:2981-94.e5. https://doi.org/10.1016/j.neuron.2021.08.017.

Bina L, Romano V, Hoogland TM, Bosman LWJ, De Zeeuw CI. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep. 2022;38:110362. https://doi.org/10.1016/j.celrep.2022.110362.

Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59:1560–70. https://doi.org/10.1016/j.neuroimage.2011.08.065.

Bosman LW, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WH, Ju C, Gong W, Koekkoek SK, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci. 2011;5:53. https://doi.org/10.3389/fnint.2011.00053.

Ruigrok TJH, Sillitoe RV, Voogd J. Chapter 9 - Cerebellum and cerebellar connections. In: Paxinos G, editor. The Rat Nervous System (Fourth Edition). San Diego: Academic Press; 2015. p. 133–205.

Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

Szentágothai J, Rajkovits K. Über den Ursprung der Kletterfasern des Kleinhirns. Z Anat Entwicklungsgesch. 1959;121:130–41. https://doi.org/10.1007/BF00525203.

Eccles JC, Llinás R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol. 1966;182:268–96. https://doi.org/10.1113/jphysiol.1966.sp007824.

Parasuram H, Nair B, Naldi G, D’Angelo E, Diwakar S. Understanding cerebellum granular layer network computations through mathematical reconstructions of evoked local field potentials. Ann Neurosci. 2018;25:11–24. https://doi.org/10.1159/000481905.

Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–5. https://doi.org/10.1016/s0166-2236(98)01318-6.

Ankri L, Husson Z, Pietrajtis K, Proville R, Léna C, Yarom Y, Dieudonné S and Uusisaari MY. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. Elife 2015: 4. https://doi.org/10.7554/eLife.06262

Gao Z, Proietti-Onori M, Lin Z, Ten Brinke MM, Boele HJ, Potters JW, Ruigrok TJH, Hoebeek FE, De Zeeuw CI. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron. 2016;89:645–57. https://doi.org/10.1016/j.neuron.2016.01.008.

Buisseret-Delmas C, Angaut P. The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol. 1993;40:63–87. https://doi.org/10.1016/0301-0082(93)90048-w.

Voogd J, Shinoda Y, Ruigrok TJH, Sugihara I. Cerebellar nuclei and the inferior olivary nuclei: organization and connections. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the Cerebellum and Cerebellar Disorders. Dordrecht, Springer: Netherlands; 2013. p. 377–436.

Goodman DC, Hallett RE, Welch RB. Patterns of localization in the cerebellar corticonuclear projections of albino rat. J Comp Neurol. 1963;121:51–67. https://doi.org/10.1002/cne.901210106.

Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

Stilling B. Untersuchungen über den Bau des kleinen Gehirns des Menschen. Cassel: T. Kay; 1864.

Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, Carrel AJ, Cerminara N, Coco M, Gruart A, Sánchez-Campusano R. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12:738–57. https://doi.org/10.1007/s12311-013-0464-0.

Bond KM, Brinjikji W, Eckel LJ, Kallmes DF, McDonald RJ, Carr CM. Dentate update: imaging features of entities that affect the dentate nucleus. AJNR Am J Neuroradiol. 2017;38:1467–74. https://doi.org/10.3174/ajnr.A5138.

Matano S. Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol. 2001;114:163–5. https://doi.org/10.1002/1096-8644(200102)114:2%3c163::AID-AJPA1016%3e3.0.CO;2-F.

Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98. https://doi.org/10.1002/(SICI)1097-0193(1996)4:3%3c174::AID-HBM3%3e3.0.CO;2-0.

Judd EN, Lewis SM and Person AL. Diverse inhibitory projections from the cerebellar interposed nucleus. Elife 2021: 10. https://doi.org/10.7554/eLife.66231

Fujita H, Kodama T and Du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 2020: 9:1–91. https://doi.org/10.7554/eLife.58613

Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E, Kolluru SS, Jones RC, Allen WE, Wang Y, Cho SW, Zhou H, Ding JB, Chang HY, Deisseroth K, Quake SR and Luo L. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 2020: 370. https://doi.org/10.1126/science.abd5059

Frontera JL, Baba Aissa H, Sala RW, Mailhes-Hamon C, Georgescu IA, Léna C and Popa D. Bidirectional control of fear memories by cerebellar neurons projecting to the ventrolateral periaqueductal grey. Nat Commun 2020: 11. https://doi.org/10.1038/s41467-020-18953-0

Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, Luo L. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524:88–92. https://doi.org/10.1038/nature14600.

Carta I, Chen CH, Schott AL, Dorizan S and Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Sci 2019: 363. https://doi.org/10.1126/science.aav0581

Vaaga CE, Brown ST and Raman IM. Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray. eLife 2020: 9. https://doi.org/10.7554/eLife.54302

Paxinos G, Franklin KBJ. Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Amsterdam: Elsevier Academic Press; 2013.

Ito J, Sasa M, Matsuoka I, Takaori S. Afferent projection from reticular nuclei, inferior olive and cerebellum to lateral vestibular nucleus of the cat as demonstrated by horseradish peroxidase. BRAIN RES. 1982;231:427–32. https://doi.org/10.1016/0006-8993(82)90378-x.

Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K and Yaginuma H. Anatomical evidence for a direct projection from purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front Neural Circuits 2018: 12. https://doi.org/10.3389/fncir.2018.00006

Dietrichs E, Haines DE. Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anat Embryol (Berl). 1984;170:313–8. https://doi.org/10.1007/bf00318735.

Iordanova R and Reddivari AKR. Neuroanatomy, medulla oblongata. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Bentivoglio M, Kuypers HG. Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord A fluorescent double retrograde labeling study. Exp Brain Res. 1982;46:339–56.

Bentivoglio M, Molinari M. Crossed divergent axon collaterals from cerebellar nuclei to thalamus and lateral medulla oblongata in the rat. BRAIN RES. 1986;362:180–4. https://doi.org/10.1016/0006-8993(86)91414-9.

Cobos A, Lima D, Almeida A, Tavares I. Brain afferents to the lateral caudal ventrolateral medulla: A retrograde and anterograde tracing study in the rat. Neuroscience. 2003;120:485–98. https://doi.org/10.1016/s0306-4522(03)00209-4.

Moolenaar GW, Rucker HK. Autoradiographic study of brain stem projections from fastigial pressor areas. BRAIN RES. 1976;114:492–6. https://doi.org/10.1016/0006-8993(76)90970-7.

Hirai T, Onodera S, Kawamura K. Cerebellotectal projections studied in cats with horseradish peroxidase or tritiated amino acids axonal transport. EXP BRAIN RES. 1982;48:1–12.

Andrezik JA, Dormer KJ, Foreman RD, Person RJ. Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neuroscience. 1984;11:497–507. https://doi.org/10.1016/0306-4522(84)90040-x.

Schneider JS, Manetto C, Lidsky TI. Substantia nigra projection to medullary reticular formation: Relevance to oculomotor and related motor function in the cat. NEUROSCI LETT. 1985;62:1–6. https://doi.org/10.1016/0304-3940(85)90275-7.

Homma Y, Nonaka S, Matsuyama K, Mori S. Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res. 1995;23:89–102.

Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, Du Lac S. Glycinergic projection neurons of the cerebellum. J Neurosci. 2009;29:10104–10. https://doi.org/10.1523/jneurosci.2087-09.2009.

Lu L, Cao Y, Tokita K, Heck DH, Boughter JD Jr. Medial cerebellar nuclear projections and activity patterns link cerebellar output to orofacial and respiratory behavior. Front Neural Circuits. 2013. https://doi.org/10.3389/fncir.2013.00056.

Batton Iii RR, Jayaraman A, Ruggiero D, Carpenter MB. Fastigial efferent projections in the monkey: an autoradiographic study. J COMP NEUROL. 1977;174:281–305.

Mezey E, Kiss J, Palkovits M. Bidirectional neuronal connections between the cerebellar interpositus nucleus and the brainstem (an autoradiographic study). ACTA MORPHOL HUNG. 1985;33:45–60.

Giuditta M, Ruggiero DA, Del Bo A. Anatomical basis for the fastigial pressor response. Blood Press. 2003;12:175–80. https://doi.org/10.1080/08037050301800.

Takahashi M, Sugiuchi Y, Shinoda Y. Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons. J Neurophysiol. 2014;111:849–67. https://doi.org/10.1152/jn.00634.2013.

Xu F, Zhou T, Gibson T, Frazier DT. Fastigial nucleus-mediated respiratory responses depend on the medullary gigantocellular nucleus. J Appl Physiol. 2001;91:1713–22. https://doi.org/10.1152/jappl.2001.91.4.1713.

Walker EP and Tadi P. Neuroanatomy, nucleus raphe. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Törk I. Anatomy of the serotonergic system. Ann N Y Acad Sci 1990: 600:9–34; discussion -5. https://doi.org/10.1111/j.1749-6632.1990.tb16870.x

Poliacek I, Jakus J, Simera M, Veternik M, Plevkova J. Control of coughing by medullary raphé. Prog Brain Res. 2014;212:277–95. https://doi.org/10.1016/b978-0-444-63488-7.00014-8.

Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem. 2015;22:452–60. https://doi.org/10.1101/lm.037317.114.

Urban DJ, Zhu H, Marcinkiewcz CA, Michaelides M, Oshibuchi H, Rhea D, Aryal DK, Farrell MS, Lowery-Gionta E, Olsen RH, Wetsel WC, Kash TL, Hurd YL, Tecott LH, Roth BL. Elucidation of The behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons. Neuropsychopharmacology. 2016;41:1404–15. https://doi.org/10.1038/npp.2015.293.

Çavdar S, Özgur M, Kuvvet Y, Bay H, Aydogmus E. Cortical, subcortical and brain stem connections of the cerebellum via the superior and middle cerebellar peduncle in the rat. J Integr Neurosci. 2018;17:609–18. https://doi.org/10.3233/JIN-180090.

Asanuma C, Thach WT, Jones EG. Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. BRAIN RES REV. 1983;5:299–322. https://doi.org/10.1016/0165-0173(83)90017-6.

Langer TP, Kaneko CRS. Brainstem afferents to the omnipause region in the cat: a horseradish peroxidase study. J COMP NEUROL. 1984;230:444–58. https://doi.org/10.1002/cne.902300312.

Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). BRAIN RES BULL. 1990;25:919–27. https://doi.org/10.1016/0361-9230(90)90189-7.

Marcinkiewicz M, Morcos R, Chretien M. CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J COMP NEUROL. 1989;289:11–35.

Ángeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, Mora-Encinas JP. Anatomy of the brainstem: a gaze into the stem of life. Seminars in Ultrasound, CT and MRI. 2010;31:196–219. https://doi.org/10.1053/j.sult.2010.03.006.

Horn AK. The reticular formation. Prog Brain Res. 2006;151:127–55. https://doi.org/10.1016/s0079-6123(05)51005-7.

Mangold SA and Das JM. Neuroanatomy, reticular formation. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Lee HS. Distribution of neurons in the lateral reticular nucleus projecting to cervical, thoracic, and lumbar segments of the spinal cord in the rat. Korean Journal of Biological Sciences. 2000;4:353–9. https://doi.org/10.1080/12265071.2000.9647569.

Alstermark B, Ekerot CF. The lateral reticular nucleus: a precerebellar centre providing the cerebellum with overview and integration of motor functions at systems level. A new hypothesis Journal of Physiology-London. 2013;591:5453–8.

Hrycyshyn AW, Flumerfelt BA. A light microscopic investigation of the afferent connections of the lateral reticular nucleus in the cat. J COMP NEUROL. 1981;197:477–502. https://doi.org/10.1002/cne.901970309.

Qvist H. The cerebellar nuclear afferent and efferent connections with the lateral reticular nucleus in the cat as studied with retrograde transport of WGA-HRP. ANAT EMBRYOL. 1989;179:471–83. https://doi.org/10.1007/bf00319590.

Rajakumar N, Hrycyshyn AW, Flumerfelt BA. Afferent organization of the lateral reticular nucleus in the rat: an anterograde tracing study. Anat Embryol (Berl). 1992;185:25–37.

Low AYT, Thanawalla AR, Yip AKK, Kim J, Wong KLL, Tantra M, Augustine GJ, Chen AI. Precision of discrete and rhythmic forelimb movements requires a distinct neuronal subpopulation in the interposed anterior nucleus. Cell Rep. 2018;22:2322–33.

Angeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, Mora-Encinas JP. Anatomy of the brainstem: a gaze into the stem of life. Semin Ultrasound CT MR. 2010;31:196–219. https://doi.org/10.1053/j.sult.2010.03.006.

Gonzalo-Ruiz A, Leichnetz GR, Smith DJ. Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in new world monkeys: a retrograde horseradish peroxidase study. J COMP NEUROL. 1988;268:508–26.

Leichnetz GR, Carlton SM, Katayama Y, Gonzalo-Ruiz A, Holstege G, DeSalles AA, Hayes RL. Afferent and efferent connections of the cholinoceptive medial pontine reticular formation (region of the ventral tegmental nucleus) in the cat. Brain Res Bull. 1989;22:665–88.

Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566–96. https://doi.org/10.1002/cne.21891.

Schuller G. Significance of the paralemniscal tegmental area for audio-motor control in the moustached bat, Pteronotus p. Parnellii: The afferent and efferent connections of the paralemniscal area. EUR J NEUROSCI. 1997;9:342–55. https://doi.org/10.1111/j.1460-9568.1997.tb01404.x.

Kawamura S, Hattori S, Higo S, Matsuyama T. The cerebellar projections to the superior colliculus and pretectum in the cat: an autoradiographic and horseradish peroxidase study. Neuroscience. 1982;7:1673–89. https://doi.org/10.1016/0306-4522(82)90026-4.

Simon H, Le Moal M, Calas A. Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. BRAIN RES. 1979;178:17–40. https://doi.org/10.1016/0006-8993(79)90085-4.

Perciavalle V, Berretta S, Raffaele R. Projections from the intracerebellar nuclei to the ventral midbrain tegmentum in the rat. Neuroscience. 1989;29:109–19. https://doi.org/10.1016/0306-4522(89)90336-9.

Paul M, S. and Das J, M. . Neuroanatomy, superior and inferior olnvary Nucleus (superior and inferior olivary complex). StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Ausim AS. … And the olive said to the cerebellum: organization and functional significance of the olivo-cerebellar system. Neuroscientist. 2007;13:616–25. https://doi.org/10.1177/1073858407299286.

Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Write M, Zollei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, LeinReference ES. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol. 2017;525:407. https://doi.org/10.1002/cne.24130.

Yu Y, Fu Y, Watson C. The inferior olive of the C57BL/6 J mouse: a chemoarchitectonic study. Anat Rec (Hoboken). 2014;297:289–300. https://doi.org/10.1002/ar.22866.

Dietrichs E, Walberg F. The cerebellar nucleo-olivary projection in the cat. ANAT EMBRYOL. 1981;162:51–67. https://doi.org/10.1007/bf00318094.

Fredette BJ, Mugnaini E. The GABAergic cerebello-olivary projection in the rat. ANAT EMBRYOL. 1991;184:225–43.

Lee HS, Kosinski RJ, Mihailoff GA. Collateral branches of cerebellopontine axons reach the thalamus, superior colliculus, or inferior olive: a double-fluorescence and combined fluorescence-horseradish peroxidase study in the rat. Neuroscience. 1989;28:725–34. https://doi.org/10.1016/0306-4522(89)90017-1.

Lo LC, Anderson DJ. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron. 2011;72:938–50.

Martin GF, Henkel CK, King JS. Cerebello olivary fibers: their origin, course and distribution in the North American opossum. EXP BRAIN RES. 1976;24:219–36.

Teune TM, Van der Burg J, Ruigrok TJH. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. BRAIN RES. 1995;673:313–9. https://doi.org/10.1016/0006-8993(94)01431-g.

De Zeeuw CI, Holstege JC, Ruigrok TJH, Voogd J. Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing. Neuroscience. 1990;34:645–55. https://doi.org/10.1016/0306-4522(90)90171-y.

Angaut P, Cicirata F. Cerebello-olivary projections in the rat. An autoradiographic study BRAIN BEHAV EVOL. 1982;21:24–33. https://doi.org/10.1159/000121612.

Angaut P, Sotelo C. The dentato-olivary projection in the rat as a presumptive GABAergic link in the olivo-cerebello-olivary loop. An ultrastructural study NEUROSCI LETT. 1987;83:227–31. https://doi.org/10.1016/0304-3940(87)90090-5.

Angaut P and Sotelo C. Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat. BRAIN RES 1989: 479:361–5. https://doi.org/10.1016/0006-8993(89)91641-7

Ikeda Y, Noda H, Sugita S. Olivocerebellar and cerebelloolivary connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J COMP NEUROL. 1989;284:463–88.

Dietrichs E, Walberg F. The cerebellar nucleo-olivary and olivo-cerebellar nuclear projections in the cat as studied with anterograde and retrograde transport in the same animal after implantation of crystalline WGA-HRP. II The fastigial nucleus ANAT EMBRYOL. 1985;173:253–61. https://doi.org/10.1007/bf00316306.

Ruigrok THJ, Voogd J. Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseoulus vulgaris-leucoagglutinin (PHA-L). J COMP NEUROL. 1990;298:315–33. https://doi.org/10.1002/cne.902980305.

Diagne M, Delfini C, Angaut P, Buisseret P, Buisseret-Delmas C. Fastigiovestibular projections in the rat: retrograde tracing coupled with γamino-butyric acid and glutamate immunohistochemistry. Neurosci Lett. 2001;308:49–53. https://doi.org/10.1016/s0304-3940(01)01969-3.

Künzle H. Thalamic territories innervated by cerebellar nuclear afferents in the hedgehog tenrec. Echinops telfairi J Comp Neurol. 1998;402:313–26. https://doi.org/10.1002/(sici)1096-9861(19981221)402:3%3c313::Aid-cne3%3e3.0.Co;2-e.

McCrea RA, Bishop GA, Kitai ST. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J COMP NEUROL. 1978;181:397–420.

Peltier AC, Bishop GA. The site of origin of calcitonin gene-related peptide-like immunoreactive afferents to the inferior olivary complex of the mouse. Neurosci Res. 1999;34:177–86. https://doi.org/10.1016/s0168-0102(99)00045-0.

Tolbert DL, Massopust LC, Murphy MG, Young PA. The anatomical organization of the cerebello olivary projection in the cat. J COMP NEUROL. 1976;170:525–44. https://doi.org/10.1002/cne.901700409.

Beitz AJ. The topographical organization of the olivo dentate and dentato olivary pathways in the cat. BRAIN RES. 1976;115:311–7. https://doi.org/10.1016/0006-8993(76)90515-1.

De Zeeuw CI, Holstege JC, Calkoen F, Ruigron TJH, Voogd J. A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. BRAIN RES. 1988;447:369–75. https://doi.org/10.1016/0006-8993(88)91142-0.

Ruigrok TJH and Teune TM. Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat. Front Syst Neurosci 2014: 8. https://doi.org/10.3389/fnsys.2014.00023

Pong M, Horn KM, Gibson AR. Spinal projections of the cat parvicellular red nucleus. J Neurophysiol. 2002;87:453–68. https://doi.org/10.1152/jn.00950.2000.

Dietrichs E, Walberg F. The cerebellar nucleo-olivary and olivocerebellar nuclear projections in the cat as studied with anterograde and retrograde transport in the same animal after implantation of crystalline WGA-HRP. III The interposed nuclei BRAIN RES. 1986;373:373–83.

Kalil K. Projections of the cerebellar and dorsal column nuclei upon the inferior olive in the rhesus monkey: An autoradiographic study. J COMP NEUROL. 1979;188:43–62. https://doi.org/10.1002/cne.901880105.

Buisseret-Delmas C, Batini C. Topology of the pathways to the inferior olive: an HRP study in the cat. NEUROSCI LETT. 1978;10:207–14.

De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJH, Eisenman LM, Mugnaini E, Llinás R. Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J NEUROSCI. 1996;16:3412–26.

Carlton SM, Leichnetz GR, Young EG, Mayer DJ. A transcannula method for subcortical HRP gel implants: Inferior olive afferents in the rat. BRAIN RES BULL. 1982;8:581–5. https://doi.org/10.1016/0361-9230(82)90084-3.

Schwarz C, Schmitz Y. Projection from the cerebellar lateral nucleus to precerebellar nuclei in the mossy fiber pathway is glutamatergic: a study combining anterograde tracing with immunogold labeling in the rat. J COMP NEUROL. 1997;381:320–34. https://doi.org/10.1002/(sici)1096-9861(19970512)381:3%3c320::Aid-cne5%3e3.0.Co;2-4.

Wentzel PR, Wylie DR, Ruigrok TJ, De Zeeuw CI. Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci Lett. 1995;190:45–8.

Dietrichs E, Walberg F, Nordby T. The cerebellar nucleo-olivary and olivo-cerebellar nuclear projections in the cat as studied with anterograde and retrograde transport in the same animal after implantation of crystalline WGA-HRP. I The dentate nucleus NEUROSCI RES. 1985;3:52–70. https://doi.org/10.1016/0168-0102(85)90038-0.

De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI. The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J COMP NEUROL. 1994;341:420–32.

Teune TM, Van Der Burg J, De Zeeuw CI, Voogd J, Ruigrok TJH. Single purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: A light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol. 1998;392:164–78. https://doi.org/10.1002/(sici)1096-9861(19980309)392:2%3c164::Aid-cne2%3e3.0.Co;2-0.

AbuAlrob MA and Tadi P. Neuroanatomy, nucleus solitarius. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Cutsforth-Gregory JK, Benarroch EE. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology. 2017;88:1187–96. https://doi.org/10.1212/WNL.0000000000003751.

Zoccal DB, Furuya WI, Bassi M, Colombari DSA and Colombari E. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Frontiers in Physiology 2014: 5. https://doi.org/10.3389/fphys.2014.00238

Escanilla OD, Victor JD, Di Lorenzo PM. Odor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat. J Neurosci. 2015;35:6284–97. https://doi.org/10.1523/jneurosci.3526-14.2015.

Barmack NH, Yakhnitsa V. Vestibular signals in the parasolitary nucleus. J Neurophysiol. 2000;83:3559–69. https://doi.org/10.1152/jn.2000.83.6.3559.

Barmack NH, Fredette BJ, Mugnaini E. Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. Journal of Comparative Neurology. 1998;392:352–72.

Onai T, Takayama K, Miura M. Projections to areas of the nucleus tractus solitarii related to circulatory and respiratory responses in cats. J AUTON NERV SYST. 1987;18:163–75. https://doi.org/10.1016/0165-1838(87)90103-2.

Ross CA, Ruggiero DA, Reis DJ. Afferent projections to cardiovascular portions of the nucleus of the tractus solitarius in the rat. BRAIN RES. 1981;223:402–8. https://doi.org/10.1016/0006-8993(81)91155-0.

Otake K, Reis DJ, Ruggiero DA. Afferents to the midline thalamus issue collaterals to the nucleus tractus solitarii: an anatomical basis for thalamic and visceral reflex integration. J NEUROSCI. 1994;14:5694–707. https://doi.org/10.1523/jneurosci.14-09-05694.1994.

Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci. 2011;2:38–50. https://doi.org/10.1021/cn100102c.

Price S and Daly DT. Neuroanatomy, trigeminal nucleus. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Walker HK. Cranial Nerve V: The Trigeminal Nerve. In: H. K. Walker, W. D. Hall and J. W. Hurst, editors. Clinical methods: the history, physical, and laboratory examinations. Boston, Butterworths Copyright © 1990, Butterworth Publishers, a division of Reed Publishing.; 1990.

Brodal A, Pompeiano O. The vestibular nuclei in cat. J Anat. 1957;91:438–54.

Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Research Bulletin 2003.

Hernandez E and Das MJ. Neuroanatomy, nucleus vestibular. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Sato Y, Kawasaki T, Ikarashi K. Zonal organization of the floccular Purkinje cells projecting to the vestibular nucleus in cats. BRAIN RES. 1982;232:1–15. https://doi.org/10.1016/0006-8993(82)90606-0.

Carleton SC, Carpenter MB. Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. BRAIN RES. 1983;278:29–51.

Carpenter MB, Cowie RJ. Connections and oculomotor projections of the superior vestibular nucleus and cell group “y.” BRAIN RES. 1985;336:265–87. https://doi.org/10.1016/0006-8993(85)90653-5.

Langer T, Fuchs AF, Chubb MC. Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J COMP NEUROL. 1985;235:26–37. https://doi.org/10.1002/cne.902350103.

Shojaku H, Sato Y, Ikarashi K, Kawasaki T. Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res. 1987;416:100–12.

Eisenman LM, Schalekamp MPA, Voogd J. Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. DEV BRAIN RES. 1991;60:261–6. https://doi.org/10.1016/0165-3806(91)90055-n.

Wylie DR, De Zeeuw CI, DiGiorgi PL, Simpson JI. Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol. 1994;349:448–63. https://doi.org/10.1002/cne.903490309.

Sadakane K, Kondo M, Nisimaru N. Direct projection from the cardiovascular control region of the cerebellar cortex, the lateral nodulus-uvula, to the brainstem in rabbits. Neurosci Res. 2000;36:15–26. https://doi.org/10.1016/s0168-0102(99)00103-0.

Ohashi Y, Tsubota T, Sato A, Koyano KW, Tamura K, Miyashita Y. A bicistronic lentiviral vector-based method for differential transsynaptic tracing of neural circuits. Mol Cell Neurosci. 2011;46:136–47. https://doi.org/10.1016/j.mcn.2010.08.013.

Shin M, Moghadam SH, Sekirnjak C, Bagnall MW, Kolkman KE, Jacobs R, Faulstich M, du Lac S. Multiple types of cerebellar target neurons and their circuitry in the vestibule-ocular reflex. J Neurosci. 2011;31:10776–86. https://doi.org/10.1523/jneurosci.0768-11.2011.

Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience. 2013;240:155–62. https://doi.org/10.1016/j.neuroscience.2013.02.050.

Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, Hansen EJ, Hoag AT, Lee J, de Oude NL, Venkataraju KU, Verpeut JL, Hoebeek FE, Richardson BD, Boele HJ, Wang SS. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 2021;36:109721. https://doi.org/10.1016/j.celrep.2021.109721.

Shi X, Wei H, Chen Z, Wang J, Qu W, Huang Z and Dai C. Whole-brain monosynaptic inputs and outputs of glutamatergic neurons of the vestibular nuclei complex in mice. Hear Res 2021: 401. https://doi.org/10.1016/j.heares.2020.108159

Bernard JF. Topographical organization of olivocerebellar and corticonuclear connections in the rat - An WGA-HRP study: I Lobules IX, X, and the flocculus. J COMP NEUROL. 1987;263:241–58.

De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI. Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol. 1994;349:428–47. https://doi.org/10.1002/cne.903490308.

Matsuno H, Kudoh M, Watakabe A, Yamamori T, Shigemoto R, Nagao S. Distribution and structure of synapses on medial vestibular nuclear neurons targeted by cerebellar flocculus Purkinje cells and vestibular nerve in mice: light and electron microscopy studies. PLoS ONE. 2016;11:e0164037. https://doi.org/10.1371/journal.pone.0164037.

Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol. 2009;512:282–304. https://doi.org/10.1002/cne.21889.

Barmack NH, Henkel CK, Pettorossi VE. A subparafascicular projection to the medial vestibular nucleus of the rabbit. Brain Res. 1979;172:339–43.

Paton JFR, La Noce A, Sykes RM, Sebastiani L, Bagnoli P, Ghelarducci B, Bradley DJ. Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit - Some functional considerations. J AUTON NERV SYST. 1991;36:209–24. https://doi.org/10.1016/0165-1838(91)90045-5.

Guo H, Yuan XS, Zhou JC, Chen H, Li SQ, Qu WM, Huang ZL. Whole-brain monosynaptic inputs to hypoglossal motor neurons in mice. Neurosci Bull. 2020;36:585–97. https://doi.org/10.1007/s12264-020-00468-9.

Aldes LD. Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol. 1995;353:89–108. https://doi.org/10.1002/cne.903530109.

Altschuler SM, Bao X, Miselis RR. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. J Comp Neurol. 1994;342:538–50. https://doi.org/10.1002/cne.903420404.

Berger AJ, Bayliss DA, Bellingham MC, Umemiya M, Viana F. Postnatal development of hypoglossal motoneuron intrinsic properties. Adv Exp Med Biol. 1995;381:63–71. https://doi.org/10.1007/978-1-4615-1895-2_7.

Fregosi RF. Respiratory related control of hypoglossal motoneurons–knowing what we do not know. Respir Physiol Neurobiol. 2011;179:43–7. https://doi.org/10.1016/j.resp.2011.06.023.

Sokoloff AJ. Topographic segregation of genioglossus motoneurons in the neonatal rat. Neurosci Lett. 1993;155:102–6. https://doi.org/10.1016/0304-3940(93)90683-c.

Brodal A. The perihypoglossal nuclei in the macaque monkey and the chimpanzee. J COMP NEUROL. 1983;218:257–69.

McCrea RA, Horn AK. Nucleus prepositus. Prog Brain Res. 2006;151:205–30.

McCrea RA, Baker R. Anatomical connections of the nucleus prepositus of the cat. J COMP NEUROL. 1985;237:377–407. https://doi.org/10.1002/cne.902370308.

Belknap DB, McCrea RA. Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J COMP NEUROL. 1988;268:13–28.

Petko B and Tadi P. Neuroanatomy, nucleus ambiguus. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Gaytán SP, Pásaro R. Connections of the rostral ventral respiratory neuronal cell group: an anterograde and retrograde tracing study in the rat. Brain Res Bull. 1998;47:625–42. https://doi.org/10.1016/s0361-9230(98)00125-7.

Alheid GF, McCrimmon DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol. 2008;164:3–11. https://doi.org/10.1016/j.resp.2008.07.014.

Smith JC, Abdala AP, Borgmann A, Rybak IA, Paton JF. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 2013;36:152–62. https://doi.org/10.1016/j.tins.2012.11.004.

Iwasaki H, Kani K, Maeda T. Neural connections of the pontine reticular formation, which connects reciprocally with the nucleus prepositus hypoglossi in the rat. Neuroscience. 1999;93:195–208. https://doi.org/10.1016/s0306-4522(99)00151-7.

Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972;64:166–307. https://doi.org/10.1007/3-540-05462-6_2.

Watt CB, Mihailoff GA. The cerebellopontine system in the rat. I Autoradiographic studies J COMP NEUROL. 1983;215:312–30.

Gonzalo-Ruiz A, Leichnetz GR. Collateralization of cerebellar efferent projections to the paraoculomotor region, superior colliculus, and medial pontine reticular formation in the rat: a fluorescent double-labeling study. EXP BRAIN RES. 1987;68:365–78.

Leichnetz GR, Gonzalo-Ruiz A, DeSalles AAF, Hayes RL. The origin of brainstem afferents on the paramedian pontine reticular formation in the cat. BRAIN RES. 1987;422:389–97. https://doi.org/10.1016/0006-8993(87)90951-6.

Hazrati LN, Parent A. Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. BRAIN RES. 1992;585:267–71.

Clavier RM. Afferent projections to the self-stimulation regions of the dorsal pons, including the locus coeruleus, in the rat as demonstrated by the horseradish peroxidase technique. BRAIN RES BULL. 1979;4:497–504. https://doi.org/10.1016/0361-9230(79)90034-0.

Shammah-Lagnado SJ, Costa MSMO, Ricardo JA. Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat. Neuroscience. 1992;50:403–25. https://doi.org/10.1016/0306-4522(92)90433-3.

Elisevich KV, Hrycyshyn AW, Flumerfelt BA. Cerebellar, medullary and spinal afferent connections of the paramedian reticular nucleus in the cat. BRAIN RES. 1985;332:267–82. https://doi.org/10.1016/0006-8993(85)90596-7.

Schnyder H, Reisine H, Hepp K, Henn V. Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey. BRAIN RES. 1985;329:151–60. https://doi.org/10.1016/0006-8993(85)90520-7.

Sato H, Noda H. Divergent axon collaterals from fastigial oculomotor region to mesodiencephalic junction and paramedian pontine reticular formation in macaques. NEUROSCI RES. 1991;11:41–54. https://doi.org/10.1016/0168-0102(91)90065-7.

Crandall WF, Keller EL. Visual and oculomotor signals in nucleus reticularis tegmenti pontis in alert monkey. J Neurophysiol. 1985;54:1326–45. https://doi.org/10.1152/jn.1985.54.5.1326.

Precht W, Strata P. On the pathway mediating optokinetic responses in vestibular nuclear neurons. Neuroscience. 1980;5:777–87. https://doi.org/10.1016/0306-4522(80)90170-0.

Maekawa K, Takeda T, Kimura M. Neural activity of nucleus reticularis tegmenti pontis–the origin of visual mossy fiber afferents to the cerebellar flocculus of rabbits. Brain Res. 1981;210:17–30. https://doi.org/10.1016/0006-8993(81)90881-7.

Cazin L, Lannou J, Precht W. An electrophysiological study of pathways mediating optokinetic responses to the vestibular nucleus in the rat. Exp Brain Res. 1984;54:337–48. https://doi.org/10.1007/bf00236235.

Suzuki DA, Yamada T, Yee RD. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis. J Neurophysiol. 2003;89:2146–58. https://doi.org/10.1152/jn.00117.2002.

Cicirata F, Panto MR, Angaut P. An autoradiographic study of the cerebellopontine projections in the rat I Projections from the medial cerebellar nucleus. BRAIN RES. 1982;253:303–8. https://doi.org/10.1016/0006-8993(82)90697-7.

Gerrits NM, WillemseGeest VDL, Kornet M. Some observations on the cerebellopontine projections in the cat - with a hypothesis to explain species differences. NEUROSCI LETT. 1984;44:65–70. https://doi.org/10.1016/0304-3940(84)90222-2.

Angaut P, Cicirata F, Panto MR. An autoradiographic study of the cerebellopontine projections from the interposed and lateral cerebellar nuclei in the rat. J HIRNFORSCH. 1985;26:463–70.

Shammah-Lagnado SJ, Negrao N, Silva BA, Ricardo JA. Afferent connections of the nuclei reticularis pontis oralis and caudalis: a horseradish peroxidase study in the rat. Neuroscience. 1987;20:961–90. https://doi.org/10.1016/0306-4522(87)90256-9.

Verveer C, Hawkins RK, Ruigrok TJH, De Zeeuw CI. Ultrastructural study of the GABAergic and cerebellar input to the nucleus reticularis tegmenti pontis. BRAIN RES. 1997;766:289–96. https://doi.org/10.1016/s0006-8993(97)00774-9.

Stanton GB. Organization of cerebellar and area “y” projections to the nucleus reticularis tegmenti pontis in macaque monkeys. J Comp Neurol. 2001;432:169–83. https://doi.org/10.1002/cne.1095.

Brodal P, Bjaalie JG. Organization of the pontine nuclei. Neurosci Res. 1992;13:83–118.

Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife. 2013;2:e00400. https://doi.org/10.7554/eLife.00400.

Aas JE, Brodal P. GABA and glycine as putative transmitters in subcortical pathways to the pontine nuclei A combined immunocytochemical and retrograde tracing study in the cat with some observations in the rat. NEUROSCIENCE. 1990;34:149–62. https://doi.org/10.1016/0306-4522(90)90309-r.

Desmond JE, Rosenfield ME, Moore JW. An HRP study of the brainstem afferents to the accessory abducens region and dorsolateral pons in rabbit: Implications for the conditioned nictitating membrane response. BRAIN RES BULL. 1983;10:747–63. https://doi.org/10.1016/0361-9230(83)90208-3.

Mihailoff GA, Watt CB, Burne RA. Evidence suggesting that both the corticopontine and cerebellopontine systems are each composed of two separate neuronal populations: An electron microscopic and horseradish peroxidase study in the rat. J COMP NEUROL. 1981;195:221–42. https://doi.org/10.1002/cne.901950204.

de Carvalho D, Patrone LG, Taxini CL, Biancardi V, Vicente MC, Gargaglioni LH. Neurochemical and electrical modulation of the locus coeruleus: contribution to CO2drive to breathe. Front Physiol. 2014;5:288. https://doi.org/10.3389/fphys.2014.00288.

Benarroch EE. Locus coeruleus. Cell Tissue Res. 2018;373:221–32. https://doi.org/10.1007/s00441-017-2649-1.

Gargaglioni LH, Hartzler LK, Putnam RW. The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol. 2010;173:264–73. https://doi.org/10.1016/j.resp.2010.04.024.

Morgane PJ, Jacobs MS. Raphe projections to the locus coeruleus in the rat. BRAIN RES BULL. 1979;4:519–34. https://doi.org/10.1016/0361-9230(79)90037-6.

Cedarbaum JM, Aghajanian GK. Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J COMP NEUROL. 1978;178:1–15.

Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem. 2021;156:16–37. https://doi.org/10.1111/jnc.15041.

Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM. Parabrachial complex: a hub for pain and aversion. J Neurosci. 2019;39:8225–30. https://doi.org/10.1523/JNEUROSCI.1162-19.2019.

Supple WF Jr, Kapp BS. Anatomical and physiological relationships between the anterior cerebellar vermis and the pontine parabrachial nucleus in the rabbit. BRAIN RES BULL. 1994;33:561–74. https://doi.org/10.1016/0361-9230(94)90082-5.

Seneviratne SO and Patel BC. Facial nerve anatomy and clinical applications. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Shammah Lagnado SJ, Ricardo JA, Sakamoto NTMN, Negrao N. Afferent connections of the mesencephalic reticular formation: a horseradish peroxidase study in the rat. Neuroscience. 1983;9:391–409. https://doi.org/10.1016/0306-4522(83)90302-0.

Sugimoto T, Mizuno N, Uchida K. Distribution of cerebellar fiber terminals in the midbrain visuomotor areas: an autoradiographic study in the cat. Brain Res. 1982;238:353–70.

Person RJ, Andrezik JA, Dormer KJ, Foreman RD. Fastigial nucleus projections in the midbrain and thalamus in dogs. Neuroscience. 1986;18:105–20. https://doi.org/10.1016/0306-4522(86)90182-x.

Berretta S, Bosco G, Giaquinta G, Smecca G, Perciavalle V. Cerebellar influences on accessory oculomotor nuclei of the rat: a neuroanatomical, immunohistochemical, and electrophysiological study. J COMP NEUROL. 1993;338:50–66. https://doi.org/10.1002/cne.903380105.

Kennedy PR. Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis. Trends Neurosci. 1990;13:474–9. https://doi.org/10.1016/0166-2236(90)90079-p.

Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum. 2010;9:167–73. https://doi.org/10.1007/s12311-009-0145-1.

Lavoie S, Drew T. Discharge characteristics of neurons in the red nucleus during voluntary gait modifications: a comparison with the motor cortex. J Neurophysiol. 2002;88:1791–814.

Ulfig N, Chan WY. Differential expression of calcium-binding proteins in the red nucleus of the developing and adult human brain. Anat Embryol (Berl). 2001;203:95–108.

Basile GA, Quartu M, Bertino S, Serra MP, Boi M, Bramanti A, Anastasi GP, Milardi D, Cacciola A. Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct. 2021;226:69–91.

Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, Heck DH, Jaeger D, Jörntell H, Kawato M, Otis TS, Ozyildirim O, Popa LS, Reeves AM, Schweighofer N, Sugihara I, Xiao J. The roles of the olivocerebellar pathway in motor learning and motor control. A Consensus Paper Cerebellum. 2017;16:230–52. https://doi.org/10.1007/s12311-016-0787-8.

Reid EK, Norris SA, Taylor JA, Hathaway EN, Smith AJ, Yttri EA, Thach WT. Is the parvocellular red nucleus involved in cerebellar motor learning? Curr Trends Neurol. 2009;3:15–22.

Olmstead CE, Villablanca JR, Sonnier BJ, McAllister JP, Gómez F. Reorganization of cerebellorubral terminal fields following hemispherectomy in adult cats. Brain Res. 1983;274:336–40.

Naus CG, Flumerfelt BA, Hrycyshyn AW. Topographic specificity of aberrant cerebellorubral projections following neonatal hemicerebellectomy in the rat. BRAIN RES. 1984;309:1–15. https://doi.org/10.1016/0006-8993(84)91005-9.

Rosenfield ME, Dovydaitis A, Moore JW. Brachium conjuntivum and rubrobulbar tract: Brain stem projections of red nucleus essential for the conditioned nictitating membrane response. PHYSIOL BEHAV. 1985;34:751–9. https://doi.org/10.1016/0031-9384(85)90374-9.

Angaut P, Batini C, Billard JM, Daniel H. The cerebellorubral projection in the rat: Retrograde anatomical study. NEUROSCI LETT. 1986;68:63–8. https://doi.org/10.1016/0304-3940(86)90230-2.

Daniel H, Billard JM, Angaut P and Batini C. The interposito-rubrospinal system. Anatomical tracing of a motor control pathway in the rat. Neurosci Res 1987: 5:87–112.

Robinson FR, Houk JC, Gibson AR. Limb specific connections of the cat magnocellular red nucleus. J COMP NEUROL. 1987;257:553–77. https://doi.org/10.1002/cne.902570406.

Song WJ, Murakami F. Ipsilateral interpositorubral projection in the kitten and its relation to post-hemicerebellectomy plasticity. DEV BRAIN RES. 1990;56:75–85. https://doi.org/10.1016/0165-3806(90)90166-v.

Beitzel CS, Houck BD, Lewis SM, Person AL. Rubrocerebellar feedback loop isolates the interposed nucleus as an independent processor of corollary discharge information in mice. J Neurosci. 2017;37:10085–96. https://doi.org/10.1523/jneurosci.1093-17.2017.

Angaut P, Cicirata F and Serapide MF. The dentatorubral projection. An autoradiographic study in rats. Brain Behav Evol 1987: 30:272–81.

Flumerfelt BA, Caughell KA. A horseradish peroxidase study of the cerebellorubral pathway in the rat. EXP NEUROL. 1978;58:95–101.

Hendry SHC, Jones EG, Graham J. Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J COMP NEUROL. 1979;185:679–713. https://doi.org/10.1002/cne.901850406.

Phillipson OT. Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat. J COMP NEUROL. 1979;187:117–44.

Dekker JJ. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods. BRAIN RES. 1981;205:229–44. https://doi.org/10.1016/0006-8993(81)90335-8.

Kalil K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J Comp Neurol. 1981;195:25–50. https://doi.org/10.1002/cne.901950105.

Walberg F, Dietrichs E. Is there a reciprocal connection between the red nucleus and the interposed cerebellar nuclei? Conclusions based on observations of anterograde and retrograde transport of peroxidase-labelled lectin in the same animal. Brain Res. 1986;397:73–85.

Walberg F, Dietrichs E, Nordby T. The origin and termination of the dentatorubral fibres in the cat as studied with retrograde and anterograde transport of peroxidase labelled lectin. EXP BRAIN RES. 1986;63:294–300.

May PJ, Hall WC. The cerebellotectal pathway in the grey squirrel. EXP BRAIN RES. 1987;65:200–12.

Asanuma C, Ohkawa R, Stanfield BB, Cowan WM. Observations on the development of certain ascending inputs to the thalamus in rats. I Postnatal development DEV BRAIN RES. 1988;41:159–70.

Bernays RL, Heeb L, Cuenod M, Streit P. Afferents to the rat red nucleus studied by means of D-[3H] aspartate, [3H]choline and non-selective tracers. Neuroscience. 1988;26:601–19. https://doi.org/10.1016/0306-4522(88)90168-6.

Ostrowska A, Zguczynski L, Zimny R. Spatial arrangement of the interpositorubral projection in the rabbit: a retrograde HRP study. BIOL STRUCT MORPHOG. 1992;4:129–43.

Vaudano E, Legg CR. Cerebellar connections of the ventral lateral geniculate nucleus in the rat. ANAT EMBRYOL. 1992;186:583–8.

Giuffrida R, Aicardi G, Canedi A, Rapisarda C. Excitatory amino acids as neurotransmitters of cortical and cerebellar projections to the red nucleus: an immunocytochemical study in the guinea pig. SOMATOSENS MOT RES. 1993;10:365–76.

Ostrowska A, Sikora E, Mierzejewska-Krzyzowska B, Zimny R. The dentatorubral projection in the rabbit with emphasis on distinction from the interpositorubral connectivity: an HRP retrograde tracer study. J HIRNFORSCH. 1993;34:9–23.

Sakai ST, Patton K. Distribution of cerebellothalamic and nigrothalamic projections in the dog: a double anterograde tracing study. J COMP NEUROL. 1993;330:183–94.

Daly RD. Cerebellar terminations in the red nucleus of Macaca fascicularis: an electron-microscopic study utilizing the anterograde transport of WGA:HRP. SOMATOSENS MOT RES. 1994;11:101–7.

Olyntho-Tokunaga HHV, Pinto ML, Souccar C, Schoorlemmer GHM, Lapa RCRS. Projections from the anterior interposed nucleus to the red nucleus diminish with age in the mouse. J Vet Med Ser C Anat Histol Embryol. 2008;37:438–41. https://doi.org/10.1111/j.1439-0264.2008.00877.x.

Kuramoto E, Fujiyama F, Nakamura KC, Tanaka Y, Hioki H, Kaneko T. Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci. 2011;33:95–109. https://doi.org/10.1111/j.1460-9568.2010.07481.x.

Del Rio-Bermudez C, Plumeau AM, Sattler NJ, Sokoloff G, Blumberg MS. Spontaneous activity and functional connectivity in the developing cerebellorubral system. J Neurophysiol. 2016;116:1316–27. https://doi.org/10.1152/jn.00461.2016.

Hara S, Kaneyama T, Inamata Y, Onodera R, Shirasaki R. Interstitial branch formation within the red nucleus by deep cerebellar nuclei-derived commissural axons during target recognition. J Comp Neurol. 2016;524:999–1014. https://doi.org/10.1002/cne.23888.

Asan E. The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol. 1998;142:1–118. https://doi.org/10.1007/978-3-642-72085-7.

Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94. https://doi.org/10.1038/nrn1406.

Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron. 2011;70:855–62. https://doi.org/10.1016/j.neuron.2011.03.025.

Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7. https://doi.org/10.1038/nature11527.

Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka RC, Luo L. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34. https://doi.org/10.1016/j.cell.2015.07.015.

Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–34. https://doi.org/10.1016/j.neuron.2010.11.022.

Fox ME, Lobo MK. The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry. 2019;24:1798–815. https://doi.org/10.1038/s41380-019-0415-3.

Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25. https://doi.org/10.1038/nrn3381.

Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27. https://doi.org/10.1152/jn.1998.80.1.1.

Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science. 2004;303:2040–2. https://doi.org/10.1126/science.1093360.

Borland JM, Grantham KN, Aiani LM, Frantz KJ, Albers HE. Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology. 2018;95:128–37. https://doi.org/10.1016/j.psyneuen.2018.05.028.

Baek SJ, Park J, Kim J, Yamamoto Y and Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behavior. bioRxiv 2021:2021.08.25.457606. https://doi.org/10.1101/2021.08.25.457606

Parker KL, Narayanan NS and Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci 2014: 8. https://doi.org/10.3389/fnsys.2014.00163

Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. EXP NEUROL. 1976;53:714–28. https://doi.org/10.1016/0014-4886(76)90150-3.

Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74:858–73. https://doi.org/10.1016/j.neuron.2012.03.017.

Wang X, Novello M, Gao Z, Ruigrok TJH, De Zeeuw CI. Input and output organization of the mesodiencephalic junction for cerebro-cerebellar communication. J Neurosci Res. 2022;100:620–37. https://doi.org/10.1002/jnr.24993.

Carlton SM, Leichnetz GR, Mayer DJ. Projections from the nucleus parafascicularis prerubralis to medullary raphe nuclei and inferior olive in the rat: a horseradish peroxidase and autoradiography study. Neurosci Lett. 1982;30:191–7. https://doi.org/10.1016/0304-3940(82)90398-6.

Onodera S. Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol. 1984;227:37–49. https://doi.org/10.1002/cne.902270106.

Brown JT, Chan-Palay V, Palay SL. A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol. 1977;176:1–22. https://doi.org/10.1002/cne.901760102.

Rutherford JG, Anderson WA, Gwyn DG. A reevaluation of midbrain and diencephalic projections to the inferior olive in rat with particular reference to the rubro-olivary pathway. J Comp Neurol. 1984;229:285–300. https://doi.org/10.1002/cne.902290213.

Voogd J, Ruigrok TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol. 2004;33:5–21. https://doi.org/10.1023/B:NEUR.0000029645.72074.2b.

De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol. 1989;284:12–35. https://doi.org/10.1002/cne.902840103.

Kubo R, Aiba A, Hashimoto K. The anatomical pathway from the mesodiencephalic junction to the inferior olive relays perioral sensory signals to the cerebellum in the mouse. J Physiol. 2018;596:3775–91. https://doi.org/10.1113/jp275836.

Leichnetz GR, Spencer RF, Smith DJ. Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey. J COMP NEUROL. 1984;228:359–87.

Linauts M, Martin GF. The organization of olivo-cerebellar projections in the opossum, didelphis virginiana, as revealed by the retrograde transport of horseradish peroxidase. J COMP NEUROL. 1978;179:355–81.

Nakamura Y, Kitao Y, Okoyama S. Cortico-Darkschewitsch-olivary projection in the cat: an electron microscope study with the aid of horseradish peroxidase tracing technique. Brain Res. 1983;274:140–3. https://doi.org/10.1016/0006-8993(83)90529-2.

Swenson RS, Castro AJ. The afferent connections of the inferior olivary complex in rats An anterograde study using autoradiographic and axonal degeneration techniques. NEUROSCIENCE. 1983;8:259–75. https://doi.org/10.1016/0306-4522(83)90064-7.

Ostrowska A, Zimny R, Zguczynski L, Sikora E. Subcortical afferents to the interstitial nucleus of Cajal: an anatomical retrograde tracing study in the rabbit. J HIRNFORSCH. 1990;31:747–59.

Bohlen MO, Gamlin PD, Warren S, May PJ. Cerebellar projections to the macaque midbrain tegmentum: possible near response connections. Vis Neurosci. 2021;38:E007. https://doi.org/10.1017/s0952523821000067.

Gonzalo-Ruiz A, Leichnetz GR, Hardy SGP. Projections of the medial cerebellar nucleus to oculomotor-related midbrain areas in the rat: an anterograde and retrograde HRP study. J COMP NEUROL. 1990;296:427–36. https://doi.org/10.1002/cne.902960308.

Fukushima K, Terashima T, Kudo J. Projections of the group y of the vestibular nuclei and the dentate and fastigial nuclei of the cerebellum to the interstitial nucleus of Cajal. NEUROSCI RES. 1986;3:285–99. https://doi.org/10.1016/0168-0102(86)90021-0.

da Silva AV, Torres KR, Haemmerle CA, Céspedes IC, Bittencourt JC. The Edinger-Westphal nucleus II: hypothalamic afferents in the rat. J Chem Neuroanat. 2013;54:5–19. https://doi.org/10.1016/j.jchemneu.2013.04.001.

De Zeeuw CI, Ruigrok TJH. Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. BRAIN RES. 1994;653:345–50. https://doi.org/10.1016/0006-8993(94)90411-1.

May PJ, Porter JD, Gamlin PDR. Interconnections between the primate cerebellum and midbrain near-response regions. J COMP NEUROL. 1992;315:98–116.

Rutherford JG, Zuk-Harper A, Gwyn DG. A comparison of the distribution of the cerebellar and cortical connections of the nucleus of Darkschewitsch (ND) in the cat: a study using anterograde and retrograde HRP tracing techniques. ANAT EMBRYOL. 1989;180:485–96.

Sakai ST, Inase M, Tanji J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. Journal of Comparative Neurology. 1996;368:215–28.

Heiland Hogan MB, Subramanian S and J MD. Neuroanatomy, Edinger–Westphal nucleus (accessory oculomotor nucleus). StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5:439–73. https://doi.org/10.1002/cphy.c140014.

Szabadi E. Functional organization of the sympathetic pathways controlling the pupil: light-inhibited and light-stimulated pathways. Front Neurol. 2018;9:1069. https://doi.org/10.3389/fneur.2018.01069.

Che Ngwa E, Zeeh C, Messoudi A, Büttner-Ennever JA, Horn AK. Delineation of motoneuron subgroups supplying individual eye muscles in the human oculomotor nucleus. Front Neuroanat. 2014;8:2. https://doi.org/10.3389/fnana.2014.00002.

Joyce C, Le PH and Peterson DC. Neuroanatomy, Cranial Nerve 3 (Oculomotor). StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Hutchins B, Weber JT. The pretectal complex of the monkey: a reinvestigation of the morphology and retinal terminations. J Comp Neurol. 1985;232:425–42. https://doi.org/10.1002/cne.902320402.

Gamlin PDR. The pretectum: connections and oculomotor-related roles. In: Büttner-Ennever JA, editor. Progress in Brain Research. Elsevier; 2006. p. 379–405.

Magoun HW, Ranson SW. The central path of the light reflex: a study of the effect of lesions. Arch Ophthalmol. 1935;13:791–811. https://doi.org/10.1001/archopht.1935.00840050069006.

Pong M, Fuchs AF. Characteristics of the pupillary light reflex in the macaque monkey: discharge patterns of pretectal neurons. J Neurophysiol. 2000;84:964–74. https://doi.org/10.1152/jn.2000.84.2.964.

Nakamura H, Wu R, Watanabe K, Onozuka M, Itoh K. Projections of glutamate decarboxylase positive and negative cerebellar neurons to the pretectum in the cat. Neurosci Lett. 2006;403:30–4.

Bull MS, Berkley KJ. Cerebellar projections to the somatic pretectum in the cat. SOMATOSENS MOT RES. 1991;8:117–26.

Pong M, Horn KM, Gibson AR. Pathways for control of face and neck musculature by the basal ganglia and cerebellum. Brain Res Rev. 2008;58:249–64. https://doi.org/10.1016/j.brainresrev.2007.11.006.

Schäfer CB, Hoebeek FE. Convergence of primary sensory cortex and cerebellar nuclei pathways in the whisker system. Neuroscience. 2018;368:229–39. https://doi.org/10.1016/j.neuroscience.2017.07.036.

Aumann TD, Rawson JA, Pichitpornchai C, Horne MK. Projections from the cerebellar interposed and dorsal column nuclei to the thalamus in the rat: a double anterograde labelling study. Journal of Comparative Neurology. 1996;368:608–19.

Aumann TD, Horne MK. Ramification and termination of single axons in the cerebellothalamic pathway of the rat. J Comp Neurol. 1996;376:420–30. https://doi.org/10.1002/(sici)1096-9861(19961216)376:3%3c420::Aid-cne5%3e3.0.Co;2-4.

Zubricky RD and Das JM. Neuroanatomy, superior colliculus. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Gandhi NJ, Katnani HA. Motor functions of the superior colliculus. Annu Rev Neurosci. 2011;34:205–31. https://doi.org/10.1146/annurev-neuro-061010-113728.

King AJ. The superior colliculus. Curr Biol. 2004;14:R335–8. https://doi.org/10.1016/j.cub.2004.04.018.

Sparks DL, Gandhi NJ. Single cell signals: an oculomotor perspective. Prog Brain Res. 2003;142:35–53. https://doi.org/10.1016/s0079-6123(03)42005-0.

Beitz AJ. Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res Bull 1989: 23:25–35. 0361–9230(89)90159–7 [pii]

Cadusseau J, Roger M. Afferent projections to the superior colliculus in the rat, with special attention to the deep layers. J HIRNFORSCH. 1985;26:667–81.

Künzle H. Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec. NEUROSCI RES. 1997;28:127–45. https://doi.org/10.1016/s0168-0102(97)00034-5.

Kurimoto Y, Kawaguchi S, Murata M. Cerebellotectal projection in the rat: Anterograde and retrograde WGA-HRP study of individual cerebellar nuclei. NEUROSCI RES. 1995;22:57–71. https://doi.org/10.1016/0168-0102(95)00874-s.

Roldan M, Reinoso-Suarez F. Cerebellar projections to the superior colliculus in the cat. J NEUROSCI. 1981;1:827–34. https://doi.org/10.1523/jneurosci.01-08-00827.1981.

Edwards SB, Ginsburgh CL, Henkel CK, Stein BE. Sources of subcortical projections to the superior colliculus in the cat. J COMP NEUROL. 1979;184:309–30.

Covey E, Hall WC, Kobler JB. Subcortical connections of the superior colliculus in the mustache bat. Pteronotus parnellii J COMP NEUROL. 1987;263:179–97.

Katoh YY, Benedek G. Cerebellar fastigial neurons send bifurcating axons to both the left and right superior colliculus in cats. Brain Res. 2003;970:246–9.

Katoh YY, Arai R, Benedek G. Bifurcating projections from the cerebellar fastigial neurons to the thalamic suprageniculate nucleus and to the superior colliculus. Brain Res. 2000;864:308–11. https://doi.org/10.1016/s0006-8993(00)02156-9.

Uchida K, Mizuno N, Sugimoto T. Direct projections from the cerebellar nuclei to the superior colliculus in the rabbit: An HRP study. J COMP NEUROL. 1983;216:319–26.

Gayer NS, Faull RLM. Connections of the paraflocculus of the cerebellum with the superior colliculus in the rat brain. BRAIN RES. 1988;449:253–70.

Carrive P. The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res. 1993;58:27–47. https://doi.org/10.1016/0166-4328(93)90088-8.

Menant O, Andersson F, Zelena D, Chaillou E. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat. 2016;77:110–20. https://doi.org/10.1016/j.jchemneu.2016.06.003.

Mokhtar M and Singh P. Neuroanatomy, Periaqueductal Gray. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Walker P, Carrive P. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience. 2003;116:897–912. https://doi.org/10.1016/s0306-4522(02)00744-3.

Ho YC, Lin TB, Hsieh MC, Lai CY, Chou D, Chau YP, Chen GD, Peng HY. Periaqueductal gray glutamatergic transmission governs chronic stress-induced depression. Neuropsychopharmacology. 2018;43:302–12. https://doi.org/10.1038/npp.2017.199.

Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 1995: 46:575–605. 0301–0082(95)00009-K [pii]

Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 1994;17:379–89. https://doi.org/10.1016/0166-2236(94)90047-7.

Dampney RA, Furlong TM, Horiuchi J, Iigaya K. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton Neurosci. 2013;175:17–25. https://doi.org/10.1016/j.autneu.2012.12.008.

Subramanian HH. Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo. J Physiol. 2013;591:109–22. https://doi.org/10.1113/jphysiol.2012.245217.

Subramanian HH, Balnave RJ, Holstege G. The midbrain periaqueductal gray control of respiration. J Neurosci. 2008;28:12274–83. https://doi.org/10.1523/JNEUROSCI.4168-08.2008.

Torigoe Y, Blanks RHI, Precht W. Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat II Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology. 1986;243:88–105. https://doi.org/10.1002/cne.902430108.

Beitz AJ. The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience. 1982;7:133–59.

Veazey RB, Severin CM. Efferent projections of the deep mesencephalic nucleus (pars lateralis) in the rat. J Comp Neurol. 1980;190:231–44. https://doi.org/10.1002/cne.901900203.

Veazey RB, Severin CM. Afferent projections to the deep mesencephalic nucleus in the rat. J COMP NEUROL. 1982;204:134–50.

Hay-Schmidt A, Mikkelsen JD. Demonstration of a neuronal projection from the entopeduncular nucleus to the substantia nigra of the rat. Brain Res. 1992;576:343–7. https://doi.org/10.1016/0006-8993(92)90702-b.

Yasui Y, Tsumori T, Ando A, Domoto T, Kayahara T, Nakano K. Descending projections from the superior colliculus to the reticular formation around the motor trigeminal nucleus and the parvicellular reticular formation of the medulla oblongata in the rat. Brain Res. 1994;656:420–6. https://doi.org/10.1016/0006-8993(94)91489-3.

Olszewski J and Baxter D. Cytoarchitecture of the human brainstem. By Jerzy Olszewski and Donald Baxter. Published and distributed in North America for S. Karger by J. B. Lippincott Company, Philadelphia and Montreal. 1954. 199 pages. Price $16.00 (Reviewed by Gerhardt von Bonin). Journal of Comparative Neurology 1954: 101:825-. https://doi.org/10.1002/cne.901010308

Taber E. The cytoarchitecture of the brain stem of the cat I Brain stem nuclei of cat. J Comp Neurol. 1962;116:27–69.

Valverde F. Reticular formation of the albino rat’s brain stem cytoarchitecture and corticofugal connections. J Comp Neurol. 1962;119:25–53. https://doi.org/10.1002/cne.901190105.

Wang XM, Yuan B, Hou ZL. Role of the deep mesencephalic nucleus in the antinociception induced by stimulation of the anterior pretectal nucleus in rats. Brain Res. 1992;577:321–5. https://doi.org/10.1016/0006-8993(92)90291-g.

Rodríguez M, Abdala P, Barroso-Chinea P, González-Hernández T. The deep mesencephalic nucleus as an output center of basal ganglia: morphological and electrophysiological similarities with the substantia nigra. J Comp Neurol. 2001;438:12–31. https://doi.org/10.1002/cne.1299.

Sonne J, Reddy V and Beato MR. Neuroanatomy, Substantia Nigra. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Haber SN, Groenewegen HJ. Interrelationship of the distribution of neuropeptides and tyrosine hydroxylase immunoreactivity in the human substantia nigra. Journal of Comparative Neurology. 1989;290:53–68. https://doi.org/10.1002/cne.902900105.

Baroncini M, Jissendi P, Balland E, Besson P, Pruvo JP, Francke JP, Dewailly D, Blond S, Prevot V. MRI atlas of the human hypothalamus. Neuroimage. 2012;59:168–80. https://doi.org/10.1016/j.neuroimage.2011.07.013.

Dietrichs E, Haines DE. Observations on the cerebello-hypothalamic projection, with comments on non-somatic cerebellar circuits. Arch Ital Biol. 1985;123:133–9.

Haines DE, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J COMP NEUROL. 1984;229:559–75. https://doi.org/10.1002/cne.902290409.

Çavdar S, Tangül ŞAN, Aker R, Şehirli Ü, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45. https://doi.org/10.1017/s0021878200007172.

Li B, Zhuang QX, Gao HR, Wang JJ, Zhu JN. Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats. Brain Struct Funct. 2017;222:957–71. https://doi.org/10.1007/s00429-016-1257-2.

Keifer J and Lustig DG. Comparison of cortically and subcortically controlled motor systems. II. Distribution of anterogradely labeled terminal boutons on intracellularly filled rubrospinal neurons in rat and turtle. J Comp Neurol 2000: 416:101–11. https://doi.org/10.1002/(sici)1096-9861(20000103)416:1 < 101::Aid-cne8 > 3.0.Co;2-r

Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299:106–22. https://doi.org/10.1002/cne.902990108.

Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum and hypothalamus in the tree shrew (Tupaia glis). Brain Res. 1985;328:367–73. https://doi.org/10.1016/0006-8993(85)91051-0.

Çavdar S, Onat F, Aker R, Sehirli U, Tangul SAN, Yananli HR. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat. 2001;198:463–72. https://doi.org/10.1017/s0021878201007555.

Sherman SM. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016;19:533–41. https://doi.org/10.1038/nn.4269.

Christoffel DJ, Golden SA, Walsh JJ, Guise KG, Heshmati M, Friedman AK, Dey A, Smith M, Rebusi N, Pfau M, Ables JL, Aleyasin H, Khibnik LA, Hodes GE, Ben-Dor GA, Deisseroth K, Shapiro ML, Malenka RC, Ibanez-Tallon I, Han MH, Russo SJ. Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci. 2015;18:962–4. https://doi.org/10.1038/nn.4034.

Lambert C, Simon H, Colman J, Barrick TR. Defining thalamic nuclei and topographic connectivity gradients in vivo. Neuroimage. 2017;158:466–79. https://doi.org/10.1016/j.neuroimage.2016.08.028.

Morel A. Stereotactic Atlas of the Human Thalamus and Basal Ganglia (1st ed.). Informa Healthcare 2007.

Herrero MT, Barcia C, Navarro JM. Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst. 2002;18:386–404. https://doi.org/10.1007/s00381-002-0604-1.

Briggs F, Usrey WM. Emerging views of corticothalamic function. Curr Opin Neurobiol. 2008;18:403–7. https://doi.org/10.1016/j.conb.2008.09.002.

Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev. 2015;54:76–88. https://doi.org/10.1016/j.neubiorev.2015.03.001.

Antunes FM, Malmierca MS. Corticothalamic pathways in auditory processing: recent advances and insights from other sensory systems. Front Neural Circuits. 2021;15:721186. https://doi.org/10.3389/fncir.2021.721186.

Crabtree JW. Functional diversity of thalamic reticular subnetworks. Front Syst Neurosci. 2018;12:41. https://doi.org/10.3389/fnsys.2018.00041.

Stepniewska I, Kosmal A. Subcortical afferents to the mediodorsal thalamic nucleus of the dog. Acta Neurobiol Exp (Warsz). 1986;46:323–39.

Hoshi E, Tremblay L, Féger J, Carras PL and Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005: 8:1491–3. nn1544 [pii] https://doi.org/10.1038/nn1544

Craig AD. Retrograde analyses of spinothalamic projections in the macaque monkey: Input to the ventral lateral nucleus. Journal of Comparative Neurology. 2008;508:315–28.

Deniau JM, Kitai ST. Patterns of termination of cerebellar and basal ganglia efferents in the rat thalamus Strictly segregated and partly overlapping projections. NEUROSCI LETT. 1992;144:202–6.

Ilinsky IA, Kultas-Ilinsky K. Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J Comp Neurol. 1987;262:331–64.

Anderson ME, DeVito JL. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat. EXP BRAIN RES. 1987;68:260–76.

Sato F, Nakamura Y, Shinoda Y. Three-dimensional analysis of cerebellar terminals and their postsynaptic components in the ventral lateral nucleus of the cat thalamus. Journal of Comparative Neurology. 1996;371:537–51.

Ilinsky IA, Kultas-Ilinsky K, Rosina A, Haddy M. Quantitative evaluation of crossed and uncrossed projections from basal ganglia and cerebellum to the cat thalamus. Neuroscience. 1987;21:207–27. https://doi.org/10.1016/0306-4522(87)90334-4.

Okuda B. Cerebello-thalamo-cerebral projection from the dentate nucleus onto the frontal eye field in the cat. Acta Physiol Scand. 1994;151:1–6.

Cornwall J, Phillipson OT. Afferent projections to the parafascicular thalamic nucleus of the rat, as shown by the retrograde transport of wheat germ agglutinin. BRAIN RES BULL. 1988;20:139–50. https://doi.org/10.1016/0361-9230(88)90171-2.

Royce GJ, Bromley S, Gracco C. Subcortical projections to the centromedian and parafascicular thalamic nuclei in the cat. J COMP NEUROL. 1991;306:129–55.

Tracey DJ, Asanuma C, Jones EG, Porter R. Thalamic relay to motor cortex: afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J NEUROPHYSIOL. 1980;44:532–54. https://doi.org/10.1152/jn.1980.44.3.532.

Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. BRAIN RES REV. 1983;5:237–65. https://doi.org/10.1016/0165-0173(83)90015-2.

Sugimoto T, Mizuno N, Itoh K. An autoradiographic study on the terminal distribution of cerebellothalamic fibers in the cat. BRAIN RES. 1981;215:29–47. https://doi.org/10.1016/0006-8993(81)90489-3.

Kyuhou S, Kawaguchi S. Cerebellocerebral projection from the fastigial nucleus onto the frontal eye field and anterior ectosylvian visual area in the cat. J Comp Neurol. 1987;259:571–90. https://doi.org/10.1002/cne.902590407.

Jimenez-Castellanos J Jr, Reinoso-Suarez F. Topographical organization of the afferent connections of the principal ventromedial thalamic nucleus in the cat. J COMP NEUROL. 1985;236:297–314. https://doi.org/10.1002/cne.902360303.

Nakamura H. Cerebellar projections to the ventral lateral geniculate nucleus and the thalamic reticular nucleus in the cat. J Neurosci Res. 2018;96:63–74. https://doi.org/10.1002/jnr.24105.

Halverson HE, Lee I, Freeman JH. Associative plasticity in the medial auditory thalamus and cerebellar interpositus nucleus during eyeblink conditioning. J Neurosci. 2010;30:8787–96.

Stepniewska I, Sakai ST, Qi HX, Kaas JH. Somatosensory input to the ventrolateral thalamic region in the macaque monkey: a potential substrate for parkinsonian tremor. Journal of Comparative Neurology. 2003;455:378–95.

Çavdar S, lýz Onat FY, Yananli HR, Şehirli ÜS, Tulay C, Saka E and Gürdal E. Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat 2002: 201:485–91. https://doi.org/10.1046/j.1469-7580.2002.00119.x

Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to “AIP.” Cereb Cortex. 2005;15:913–20.

Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880:191–7. https://doi.org/10.1016/s0006-8993(00)02744-x.

Sakayori N, Kato S, Sugawara M, Setogawa S, Fukushima H, Ishikawa R, Kida S and Kobayashi K. Motor skills mediated through cerebellothalamic tracts projecting to the central lateral nucleus. Mol Brain 2019: 12. https://doi.org/10.1186/s13041-019-0431-x

Mason A, Ilinsky IA, Beck S, KultasIlinsky K. Reevaluation of synaptic relationships of cerebellar terminals in the ventral lateral nucleus of the rhesus monkey thalamus based on serial section analysis and three-dimensional reconstruction. Exp Brain Res. 1996;109:219–39.

Aumann TD, Horne MK. A comparison of the ultrastructure of synapses in the cerebello-rubral and cerebello-thalamic pathways in the rat. Neurosci Lett. 1996;211:175–8.

Rodrigo-Angulo ML, Reinoso-Suarez F. Cerebellar projections to the lateral posterior-pulvinar thalamic complex in the cat. Brain Res. 1984;322:172–6.

Çavdar S, Özgür M, Uysal SP, Amuk ÖC. Motor afferents from the cerebellum, zona incerta and substantia nigra to the mediodorsal thalamic nucleus in the rat. J Integr Neurosci. 2014;13:565–78. https://doi.org/10.1142/s0219635214500198.

Berkley KJ. Spatial relationships between the terminations of somatic sensory motor pathways in the rostral brainstem of cats and monkeys II Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon. J COMP NEUROL. 1983;220:229–51.

Erickson SL, Melchitzky DS, Lewis DA. Subcortical afferents to the lateral mediodorsal thalamus in cynomolgus monkeys. Neuroscience. 2004;129:675–90. https://doi.org/10.1016/j.neuroscience.2004.08.016.

Habas C, Manto M, Cabaraux P. The cerebellar thalamus. Cerebellum. 2019;18:635–48. https://doi.org/10.1007/s12311-019-01019-3.

Basinger H and Joseph J. Neuroanatomy, subthalamic nucleus. StatPearls. Treasure Island (FL), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995;345:91–5. https://doi.org/10.1016/s0140-6736(95)90062-4.

Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339:1105–11. https://doi.org/10.1056/nejm199810153391603.

Houeto JL, Damier P, Bejjani PB, Staedler C, Bonnet AM, Arnulf I, Pidoux B, Dormont D, Cornu P, Agid Y. Subthalamic stimulation in Parkinson disease: a multidisciplinary approach. Arch Neurol. 2000;57:461–5. https://doi.org/10.1001/archneur.57.4.461.

Çavdar S, Özgür M, Çakmak YÖ, Kuvvet Y, Kunt SK and Sağlam G. Afferent projections of the subthalamic nucleus in the rat: emphasis on bilateral and interhemispheric connections. Acta Neurobiol Exp (Wars) 2018: 78:251–63. https://doi.org/10.21307/ane-2018-023

Mitrofanis J. Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience. 2005;130:1–15. https://doi.org/10.1016/j.neuroscience.2004.08.017.

Spencer SE, Sawyer WB, Loewy AD. l-Glutamate stimulation of the zona incerta in the rat decreases heart rate and blood pressure. Brain Res. 1988;458:72–81. https://doi.org/10.1016/0006-8993(88)90497-0.

Tonelli L, Chiaraviglio E. Enhancement of water intake in rats after lidocaine injection in the zona incerta. Brain Res Bull. 1993;31:1–5. https://doi.org/10.1016/0361-9230(93)90002-S.

Shammah-Lagnado SJ, Negrao N, Ricardo JA. Afferent connections of the zona incerta: a horseradish peroxidase study in the rat. Neuroscience. 1985;15:109–34. https://doi.org/10.1016/0306-4522(85)90127-7.

Tonelli L, Chiaraviglio E. Dopaminergic neurons in the zona incerta modulates ingestive behavior in rats. Physiol Behav. 1995;58:725–9. https://doi.org/10.1016/0031-9384(95)00128-6.

Nicolelis MA, Chapin JK, Lin RC. Development of direct GABAergic projections from the zona incerta to the somatosensory cortex of the rat. Neuroscience. 1995;65:609–31. https://doi.org/10.1016/0306-4522(94)00493-o.

Aguirre JA, Covenas R, Burgos C, Castro T. Incertal projections from the brainstem and cerebellum: a horseradish peroxidase study in the cat. J HIRNFORSCH. 1989;30:449–55.

Roger M, Cadusseau J. Afferents to the zona incerta in the rat: a combined retrograde and anterograde study. J COMP NEUROL. 1985;241:480–92. https://doi.org/10.1002/cne.902410407.

Mitrofanis J, De Fonseka R. Organisation of connections between the zona incerta and the interposed nucleus. Anat Embryol. 2001;204:153–9. https://doi.org/10.1007/s004290100187.

Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.

Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N. A cortico-cerebellar loop for motor planning. Nature. 2018;563:113–6. https://doi.org/10.1038/s41586-018-0633-x.

Fujita H, Kodama T and du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 2020: 9. https://doi.org/10.7554/eLife.58613

Fink RP, Heimer L. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 1967;4:369–74. https://doi.org/10.1016/0006-8993(67)90166-7.

Lanciego JL, Wouterlood FG. A half century of experimental neuroanatomical tracing. J Chem Neuroanat. 2011;42:157–83. https://doi.org/10.1016/j.jchemneu.2011.07.001.

Taylor AC, Weiss P. Demonstration of axonal flow by the movement of tritium-labeled protein in mature optic nerve fibers. Proc Natl Acad Sci U S A. 1965;54:1521–7. https://doi.org/10.1073/pnas.54.6.1521.

Kristensson K, Olsson Y. Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons Electron microscopical localization in the neuronal perikaryon. Acta Neuropathol. 1971;19:1–9. https://doi.org/10.1007/bf00690948.

Kristensson K, Olsson Y. Retrograde axonal transport of protein. Brain Res. 1971;29:363–5. https://doi.org/10.1016/0006-8993(71)90044-8.

LaVail JH, LaVail MM. Retrograde axonal transport in the central nervous system. Science. 1972;176:1416–7. https://doi.org/10.1126/science.176.4042.1416.

Gonatas NK, Harper C, Mizutani T, Gonatas JO. Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem. 1979;27:728–34. https://doi.org/10.1177/27.3.90065.

Schwab ME, Agid I. Labelled wheat germ agglutinin and tetanus toxin as highly sensitive retrograde tracers in the CNS: the afferent fiber connections of the rat nucleus caudatus. Int J Neurol. 1979;13:117–26.

Cowan WM. The emergence of modern neuroanatomy and developmental neurobiology. Neuron. 1998;20:413–26. https://doi.org/10.1016/s0896-6273(00)80985-x.

Gerfen CR, Sawchenko PE. An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 1984;290:219–38. https://doi.org/10.1016/0006-8993(84)90940-5.

Veenman CL, Reiner A, Honig MG. Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods. 1992;41:239–54. https://doi.org/10.1016/0165-0270(92)90089-v.

Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG. Pathway tracing using biotinylated dextran amines. J Neurosci Methods. 2000;103:23–37. https://doi.org/10.1016/s0165-0270(00)00293-4.

Ericson H, Blomqvist A. Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies. J Neurosci Methods. 1988;24:225–35. https://doi.org/10.1016/0165-0270(88)90167-7.

Lencer WI, Tsai B. The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci. 2003;28:639–45. https://doi.org/10.1016/j.tibs.2003.10.002.

de Sousa TB, de Santana MA, Silva Ade M, Guzen FP, Oliveira FG, Cavalcante JC, Cavalcante Jde S, Costa MS, Nascimento ES Jr. Mediodorsal thalamic nucleus receives a direct retinal input in marmoset monkey (Callithrix jacchus): a subunit B cholera toxin study. Ann Anat. 2013;195:32–8. https://doi.org/10.1016/j.aanat.2012.04.005.

Scalia F, Rasweiler JJt and Danias J. Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: comparison with mouse. J Comp Neurol. 2015;523:1756–91. https://doi.org/10.1002/cne.23723.

Ugolini G. Advances in viral transneuronal tracing. J Neurosci Methods. 2010;194:2–20. https://doi.org/10.1016/j.jneumeth.2009.12.001.

Vercelli A, Repici M, Garbossa D, Grimaldi A. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull. 2000;51:11–28. https://doi.org/10.1016/s0361-9230(99)00229-4.

Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F, Tao HW, Zhang LI. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron. 2017;93:33–47. https://doi.org/10.1016/j.neuron.2016.11.045.

Salegio EA, Samaranch L, Kells AP, Mittermeyer G, San Sebastian W, Zhou S, Beyer J, Forsayeth J, Bankiewicz KS. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 2013;20:348–52. https://doi.org/10.1038/gt.2012.27.

Zemanick MC, Strick PL, Dix RD. Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc Natl Acad Sci U S A. 1991;88:8048–51. https://doi.org/10.1073/pnas.88.18.8048.

Zeng WB, Jiang HF, Gang YD, Song YG, Shen ZZ, Yang H, Dong X, Tian YL, Ni RJ, Liu Y, Tang N, Li X, Jiang X, Gao D, Androulakis M, He XB, Xia HM, Ming YZ, Lu Y, Zhou JN, Zhang C, Xia XS, Shu Y, Zeng SQ, Xu F, Zhao F, Luo MH. Anterograde monosynaptic transneuronal tracers derived from herpes simplex virus 1 strain H129. Mol Neurodegener. 2017;12:38. https://doi.org/10.1186/s13024-017-0179-7.

Ugolini G. Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol. 1995;356:457–80. https://doi.org/10.1002/cne.903560312.

Tang Y, Rampin O, Giuliano F, Ugolini G. Spinal and brain circuits to motoneurons of the bulbospongiosus muscle: Retrograde transneuronal tracing with rabies virus. J Comp Neurol. 1999;414:167–92. https://doi.org/10.1002/(sici)1096-9861(19991115)414:2%3c167::Aid-cne3%3e3.0.Co;2-p.

Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, Pickard GE. Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci U S A. 2000;97:9264–9. https://doi.org/10.1073/pnas.97.16.9264.

Card JP, Enquist LW. Neurovirulence of pseudorabies virus. Crit Rev Neurobiol. 1995;9:137–62.

Soudais C, Skander N, Kremer EJ. Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. Faseb j. 2004;18:391–3. https://doi.org/10.1096/fj.03-0438fje.

Peltékian E, Garcia L, Danos O. Neurotropism and retrograde axonal transport of a canine adenoviral vector: a tool for targeting key structures undergoing neurodegenerative processes. Mol Ther. 2002;5:25–32. https://doi.org/10.1006/mthe.2001.0517.

Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron. 2016;92:372–82. https://doi.org/10.1016/j.neuron.2016.09.021.

Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther. 2008;16:1710–8. https://doi.org/10.1038/mt.2008.166.

Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5:285–97. https://doi.org/10.2174/1566523054065057.

Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol. 2000;81:2147–53. https://doi.org/10.1099/0022-1317-81-9-2147.

Callaway EM, Luo L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci. 2015;35:8979–85. https://doi.org/10.1523/jneurosci.0409-15.2015.

Dado RJ, Burstein R, Cliffer KD, Giesler GJ Jr. Evidence that fluoro-gold can be transported avidly through fibers of passage. Brain Res. 1990;533:329–33. https://doi.org/10.1016/0006-8993(90)91358-n.

Chen S, Aston-Jones G. Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. BRAIN RES. 1995;674:107–11. https://doi.org/10.1016/0006-8993(95)00020-q.

Conte WL, Kamishina H, Reep RL. Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat Protoc. 2009;4:1157–66. https://doi.org/10.1038/nprot.2009.93.

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H. A mesoscale connectome of the mouse brain. Nature. 2014;508:207–14. https://doi.org/10.1038/nature13186.

Henriksen S, Pang R, Wronkiewicz M. A simple generative model of the mouse mesoscale connectome. Elife. 2016;5:e12366. https://doi.org/10.7554/eLife.12366.

Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron. 2007;53:639–47. https://doi.org/10.1016/j.neuron.2007.01.033.

Osakada F, Callaway EM. Design and generation of recombinant rabies virus vectors. Nat Protoc. 2013;8:1583–601. https://doi.org/10.1038/nprot.2013.094.

Sun L, Tang Y, Yan K, Yu J, Zou Y, Xu W, Xiao K, Zhang Z, Li W, Wu B, Hu Z, Chen K, Fu ZF, Dai J, Cao G. Differences in neurotropism and neurotoxicity among retrograde viral tracers. Mol Neurodegener. 2019;14:8. https://doi.org/10.1186/s13024-019-0308-6.

Chan-Palay V. The cerebellar dentate nucleus. Cerebellar Dentate Nucleus 1977.

Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9:56–66. https://doi.org/10.1007/s12311-009-0140-6.

Uusisaari MY, Knöpfel T. Diversity of neuronal elements and circuitry in the cerebellar nuclei. Cerebellum. 2012;11:420–1. https://doi.org/10.1007/s12311-011-0350-6.

Lefler Y, Yarom Y, Uusisaari MY. Cerebellar inhibitory input to the inferior olive decreases electrical coupling and blocks subthreshold oscillations. Neuron. 2014;81:1389–400. https://doi.org/10.1016/j.neuron.2014.02.032.

Uusisaari M, Knöpfel T. GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9:42–55. https://doi.org/10.1007/s12311-009-0137-1.

Houck BD, Person AL. Cerebellar loops: a review of the nucleocortical pathway. Cerebellum. 2014;13:378–85. https://doi.org/10.1007/s12311-013-0543-2.

De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. EUR J NEUROSCI. 1995;7:2322–33. https://doi.org/10.1111/j.1460-9568.1995.tb00653.x.

Uusisaari M, Knöpfel T. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience. 2008;156:537–49. https://doi.org/10.1016/j.neuroscience.2008.07.060.

Solodkin A, Peri E, Chen EE, Ben-Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10:218–32.

Mandelli ML, De Simone T, Minati L, Bruzzone MG, Mariotti C, Fancellu R, Savoiardo M, Grisoli M. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. AJNR Am J Neuroradiol. 2007;28:1996–2000. https://doi.org/10.3174/ajnr.A0716.

Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Assessment of Cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol. 2020;11:411. https://doi.org/10.3389/fneur.2020.00411.

Wu X, Liao X, Zhan Y, Cheng C, Shen W, Huang M, Zhou Z, Wang Z, Qiu Z, Xing W, Liao W, Tang B, Shen L. Microstructural alterations in asymptomatic and symptomatic patients with spinocerebellar ataxia type 3: a tract-based spatial statistics study. Front Neurol. 2017;8:714. https://doi.org/10.3389/fneur.2017.00714.

Akhlaghi H, Yu J, Corben L, Georgiou-Karistianis N, Bradshaw JL, Storey E, Delatycki MB, Egan GF. Cognitive deficits in Friedreich ataxia correlate with micro-structural changes in dentatorubral tract. Cerebellum. 2014;13:187–98. https://doi.org/10.1007/s12311-013-0525-4.

Vieira Karuta SC, Raskin S, de Carvalho NA, Gasparetto EL, Doring T, Teive HA. Diffusion tensor imaging and tract-based spatial statistics analysis in Friedreich’s ataxia patients. Parkinsonism Relat Disord. 2015;21:504–8. https://doi.org/10.1016/j.parkreldis.2015.02.021.

Huang SR, Wu YT, Jao CW, Soong BW, Lirng JF, Wu HM, Wang PS. CAG repeat length does not associate with the rate of cerebellar degeneration in spinocerebellar ataxia type 3. Neuroimage Clin. 2017;13:97–105. https://doi.org/10.1016/j.nicl.2016.11.007.

Zalesky A, Akhlaghi H, Corben LA, Bradshaw JL, Delatycki MB, Storey E, Georgiou-Karistianis N, Egan GF. Cerebello-cerebral connectivity deficits in Friedreich ataxia. Brain Struct Funct. 2014;219:969–81. https://doi.org/10.1007/s00429-013-0547-1.

Ferri J, Ford JM, Roach BJ, Turner JA, van Erp TG, Voyvodic J, Preda A, Belger A, Bustillo J, O’Leary D, Mueller BA, Lim KO, McEwen SC, Calhoun VD, Diaz M, Glover G, Greve D, Wible CG, Vaidya JG, Potkin SG, Mathalon DH. Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol Med. 2018;48:2492–9. https://doi.org/10.1017/s003329171800003x.

Liu H, Fan G, Xu K, Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting-state functional MRI and diffusion tensor imaging study. J Magn Reson Imaging. 2011;34:1430–8. https://doi.org/10.1002/jmri.22784.

Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC. Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry Res. 2008;163:193–200. https://doi.org/10.1016/j.pscychresns.2007.10.005.

Okugawa G, Nobuhara K, Minami T, Takase K, Sugimoto T, Saito Y, Yoshimura M, Kinoshita T. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: A diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1408–12. https://doi.org/10.1016/j.pnpbp.2006.05.014.

Okugawa G, Nobuhara K, Sugimoto T, Kinoshita T. Diffusion tensor imaging study of the middle cerebellar peduncles in patients with schizophrenia. Cerebellum. 2005;4:123–7. https://doi.org/10.1080/14734220510007879.

Koch K, Wagner G, Dahnke R, Schachtzabel C, Schultz C, Roebel M, Güllmar D, Reichenbach JR, Sauer H, Schlösser RG. Disrupted white matter integrity of corticopontine-cerebellar circuitry in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2010;260:419–26. https://doi.org/10.1007/s00406-009-0087-0.

Okugawa G, Nobuhara K, Minami T, Tamagaki C, Takase K, Sugimoto T, Sawada S, Kinoshita T. Subtle disruption of the middle cerebellar peduncles in patients with schizophrenia. Neuropsychobiology. 2004;50:119–23. https://doi.org/10.1159/000079101.

Zhang M, Palaniyappan L, Deng M, Zhang W, Pan Y, Fan Z, Tan W, Wu G, Liu Z, Pu W. Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry. 2021;60:479–89. https://doi.org/10.1016/j.jaac.2020.07.903.

Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24:3116–30. https://doi.org/10.1093/cercor/bht165.

Kim DJ, Moussa-Tooks AB, Bolbecker AR, Apthorp D, Newman SD, O’Donnell BF, Hetrick WP. Cerebellar-cortical dysconnectivity in resting-state associated with sensorimotor tasks in schizophrenia. Hum Brain Mapp. 2020;41:3119–32. https://doi.org/10.1002/hbm.25002.

Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state A functional MRI study. J Cogn Neurosci. 1999;11:80–95. https://doi.org/10.1162/089892999563265.

Haghighat H, Mirzarezaee M, Araabi BN, Khadem A. Functional networks abnormalities in autism spectrum disorder: age-related hypo and hyper connectivity. Brain Topogr. 2021;34:306–22. https://doi.org/10.1007/s10548-021-00831-7.

Jeong JW, Chugani DC, Behen ME, Tiwari VN, Chugani HT. Altered white matter structure of the dentatorubrothalamic pathway in children with autistic spectrum disorders. Cerebellum. 2012;11:957–71. https://doi.org/10.1007/s12311-012-0369-3.

Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Azuma J, Matsuzaki J, Watanabe Y, Fujita N, Taniike M. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum. 2013;12:645–56. https://doi.org/10.1007/s12311-013-0475-x.

Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, Curran S, Robertson D, Murphy DG. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage. 2008;41:1184–91. https://doi.org/10.1016/j.neuroimage.2008.03.041.

Shukla DK, Keehn B, Lincoln AJ, Müller RA. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49(1269–78):78.e1-2. https://doi.org/10.1016/j.jaac.2010.08.018.

Ogur T, Boyunaga OL. Relation of behavior problems with findings of cranial diffusion tensor MRI and MR spectroscopy in autistic children. Int J Clin Exp Med. 2015;8:5621–30.

Cheng Y, Chou KH, Chen IY, Fan YT, Decety J, Lin CP. Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage. 2010;50:873–82. https://doi.org/10.1016/j.neuroimage.2010.01.011.

Arnold Anteraper S, Guell X, D’Mello A, Joshi N, Whitfield-Gabrieli S, Joshi G. Disrupted cerebrocerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: a data-driven, whole-brain, high-temporal resolution functional magnetic resonance imaging study. Brain Connect. 2019;9:48–59. https://doi.org/10.1089/brain.2018.0581.

Ramos TC, Balardin JB, Sato JR, Fujita A. Abnormal cortico-cerebellar functional connectivity in autism spectrum disorder. Front Syst Neurosci. 2018;12:74. https://doi.org/10.3389/fnsys.2018.00074.

Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, Molinari M, Cercignani M, Bozzali M, Leggio M. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16:283–92. https://doi.org/10.1007/s12311-016-0795-8.

Verly M, Verhoeven J, Zink I, Mantini D, Peeters R, Deprez S, Emsell L, Boets B, Noens I, Steyaert J, Lagae L, De Cock P, Rommel N, Sunaert S. Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. Neuroimage Clin. 2014;4:374–82. https://doi.org/10.1016/j.nicl.2014.01.008.

Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Matsuzaki J, Hirata I, Nagatani F, Watanabe Y, Katayama T, Taniike M. Aberrant cerebellar-cerebral functional connectivity in children and adolescents with autism spectrum disorder. Front Hum Neurosci. 2018;12:454. https://doi.org/10.3389/fnhum.2018.00454.

Khan AJ, Nair A, Keown CL, Datko MC, Lincoln AJ, Müller RA. Cerebro-cerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder. Biol Psychiatry. 2015;78:625–34. https://doi.org/10.1016/j.biopsych.2015.03.024.

Anteraper SA, Guell X, Taylor HP, D’Mello A, Whitfield-Gabrieli S, Joshi G. Intrinsic functional connectivity of dentate nuclei in autism spectrum disorder. Brain Connect. 2019;9:692–702. https://doi.org/10.1089/brain.2019.0692.

Redcay E, Moran JM, Mavros PL, Tager-Flusberg H, Gabrieli JD, Whitfield-Gabrieli S. Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Front Hum Neurosci. 2013;7:573. https://doi.org/10.3389/fnhum.2013.00573.

Almeida A, Cobos A, Tavares I, Lima D. Brain afferents to the medullary dorsal reticular nucleus: A retrograde and anterograde tracing study in the rat. Eur J Neurosci. 2002;16:81–95. https://doi.org/10.1046/j.1460-9568.2002.02058.x.

Bharos TB, Kuypers HGJM, Lemon RN, Muir RB. Divergent collaterals from deep cerebellar neurons to thalamus and tectum, and to medulla oblongata and spinal cord: retrograde fluorescent and electrophysiological studies. EXP BRAIN RES. 1981;42:399–410.

Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience. 2002;110:105–21. https://doi.org/10.1016/s0306-4522(01)00544-9.