A Synthetic Proof of Pappus’ Theorem in Tarski’s Geometry
Tóm tắt
Tài liệu tham khảo
Behnke, H., Gould, S.H.: Fundamentals of Mathematics: Geometry. MIT Press, New York (1974)
Boutry, P., Narboux, J., Schreck, P.: Parallel Postulates and Decidability of Intersection of Lines: A Mechanized Study Within Tarski’s System of Geometry. Submitted, July (2015)
Boutry, P., Narboux, J., Schreck, P., Braun, G.: Ashort note about case distinctions in Tarski’s geometry. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry 2014, Proceedings of ADG 2014, pp. 1–15. Coimbra, Portugal (2014)
Boutry, P., Narboux, J., Schreck, P., Braun, G.: Using small scale automation to improve both accessibility andreadability of formal proofs in geometry. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry2014, Proceedings of ADG 2014, pp. 1–19. Coimbra, Portugal (2014)
Castéran, P.: Coq + \(\epsilon \)? In: JFLA, pp. 1–15 (2007)
Hilbert, D.: Foundations of Geometry (Grundlagen der Geometrie). Open Court, La Salle, Illinois, 1960. Second English edition, translated from the tenth German edition by Leo Unger. Original publication date (1899)
Janicic, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reason. 48(4), 489–532 (2012)